1. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity / C. Picard [et al.] // J. Clin. Immunol. – 2018. – Vol. 38, N 1. – P. 96–128. https://doi.org/10.1007/s10875-017-0464-9
2. Ensembl genome browser 95 [Electronic resource]. –Mode of access : http://www.ensembl.org/index.html. – Date of access : 03.12.2019.
3. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces / H. Venselaar [et al.] // BMC Bioinformatics. – 2010. – Vol. 11, N 1. – Art. 548. https://doi.org/10.1186/1471-2105- 11-548
4. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2) / О. П. Рыжкова [и др.] // Мед. генетика. – 2019. – Т. 18, № 2. – С. 3–23.
5. Политыко, А. Д. Геномные болезни человека. Анализ локуса 22q11 / А. Д. Политыко, О. М. Хурс, Т. Лир // Молек. и прикл. генетика. – 2009. – Т. 10. – С. 80–88.
6. Исследование компонентов системы комплемента в дифференциальной диагностике врожденного (наследственного) ангионевротического отека / И. Е. Гурьянова [и др.] // Лаб. диагностика. Вост. Европа. – 2019. – Т. 8, № 4. – С. 553–564.
7. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis / M. Bosticardo [et al.] // Am. J. Hum. Genet. – 2019. – Vol. 105, N 3. – P. 549–561. https://doi.org/10.1016/j.ajhg.2019.07.014
8. Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14 years old male / S. O. Sharapova [et al.] // Hum. Immunol. – 2013. – Vol. 74, N 1. – P. 18–22. https://doi.org/10.1016/j.humimm.2012.10.010
9. Генотип-фенотипическая характеристика пациентов с синдромом Вискотт-Олдрич / С. О. Шарапова [и др.] // Проблемы здоровья и экологии. – 2011. – № 2. – С. 95–97.
10. Primary immunodeficienciecy mutation databases / M. Vihnen [et al.] // Adv. Genet. – 2001. – Vol. 43. – P. 103–108. https://doi.org/10.1016/s0065-2660(01)43005-7
11. Mutations of the Wiskott-Aldrich syndrome protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation / Y. Jin [et al.] // Blood. – 2004. – Vol. 104, N 13. – P. 4010–4019. https://doi.org/10.1182/blood-2003-05-1592
12. Thrasher, A. J. New insights into the biology of Wiskott-Aldrich syndrome (WAS) / A. J. Thrasher // Hematol. Am. Soc. Hematol. Educ. Program. – 2009. – Vol. 2009, N 1. – P. 132–138. https://doi.org/10.1182/asheducation-2009.1.132
13. ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects / С. Campbell [et al.] // Hum. Mutat. – 2003. – Vol. 21, N 1. – P. 80–85. https://doi.org/10.1002/humu.10156
14. Perlman, S. Ataxia-Telangiectasia: diagnosis and treatment / S. Perlman, S. Becker-Catania, A. R. Gatti // Semin. Pediatr. Neurol. – 2003. – Vol. 10, N 3. – P. 173–182. https://doi.org/10.1016/s1071-9091(03)00026-3
15. Chun, H. H. Ataxia-telangiectasia, an evolving phenotype/ H. H. Chun, R. A. Gatti // DNA Repair (Amst.). – 2004. – Vol. 3, N 8–9. – P. 1187–1196. https://doi.org/10.1016/j.dnarep.2004.04.010
16. Novel biallelic ATM mutations coexist with a mosaic form of triple X syndrome in an 11-year-old girl at remission after T cell acute leukemia / S. O. Sharapova [et al.] // Immunogenetics. – 2018. – Vol. 70, N 9. – P. 613–617. https://doi.org/10.1007/s00251-018-1056-4
17. Иммунологический статус детей с врожденной агаммаглобулинемией / С. О. Шарапова [и др.] // Вес. Нац. aкад. навук Беларусі. Сер. мед. навук. – 2013. – № 2. – С. 19–29.
18. Valiaho, J. BTKbase: the mutation database for X-linked agammaglobulinemia / J. Valiaho, E. Smith, M. Vihinen // Hum. Mutat. – 2006. – Vol. 27, N 12. – P. 1209–1217. https://doi.org/10.1002/humu.20410
19. A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia / E. LopezGrandos [et al.] // J. Allergy Clin. Immunol. – 2005. – Vol. 116, N 3. – P. 690–697. https://doi.org/10.1016/j.jaci.2005.04.043
20. Genetic and demographic features of X-linked agammaglobulinemia in Eastern and Central Europe A cohort study / B. Toth [et al.] // Mol. Immunol. – 2009. – Vol. 46, N 10. – P. 2140–2146. https://doi.org/10.1016/j.molimm.2009.03.012
21. Michalovich, D. Activated PI3 kinase delta syndrome: from genetics to therapy / D. Michalovich, S. Nejentsev // Front. Immunol. – 2018. – Vol. 9. – Art. 369. https://doi.org/10.3389/fimmu.2018.00369
22. PI3Kδ and primary immunodeficiencies / C. Lucas [et al.] // Nat. Rev. Immunol. – 2016. – Vol. 16, N 11. – P. 702–714. https://doi.org/10.1038/nri.2016.93
23. CYBB mutation analysis in X-linked chronic granulomatous disease / O. Jirapongsananuruk [et al.] // Clin. Immunol. – 2002. – Vol. 104, N 1. – P. 73–76. https://doi.org/10.1006/clim.2002.5230
24. Hematologically important mutations: X-linked chronic granulomatous disease (third update) / D. Roos [et al.] // Blood Cells Mol. Dis. – 2010. – Vol. 45, N 3. – P. 246–265. https://doi.org/10.1016/j.bcmd.2010.07.012
25. Novel LRBA mutation and possible germinal mosaicism in a Slavic family / S. O. Sharapova [et al.] // J. Clin. Immunol. – 2018. – Vol. 38, N 4. – P. 471–474. https://doi.org/10.1007/s10875-018-0515-x