1. Gardiner, C. W. Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences / C. W. Gardiner. – 2nd ed. – Springer-Verlag, 1986. – 442 p. https://doi.org/10.1007/978-3-662-02452-2
2. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry / N. G. Van Kampen. – 3rd ed. – Amsterdam, 2007. – 463 p.
3. Гихман, И. И. Стохастические дифференциальные уравнения / И. И. Гихман, A. В. Скороход. – Киев: Наук. думка, 1968. – 354 с.
4. Кузнецов, Д. Ф. Численное интегрирование стохастических дифференциальных уравнений. 2 / Д. Ф. Кузнецов. – С.-Петербург: Изд-во Политехн. ун-та, 2006. – 764 с.
5. Kloeden, P. E. Numerical Solution of Stochastic Differential Equations / P. E. Kloeden, E. Platen. – Berlin: Springer, 1992. – 636 p. https://doi.org/10.1007/978-3-662-12616-5
6. Kloeden, P. E. Numerical Solution of Stochastic Differential Equations Through Computer Experiments / P. E. Kloeden, E. Platen, H. Schurz. – Berlin: Springer, 1994. – 309 p.
7. Onsager, L. Fluctuations and irreversible processes / L. Onsager, S. Machlup // Phys. Rev. – 1953. Vol. 91, № 6. – P. 1505–1512. https://doi.org/10.1103/physrev.91.1505
8. Langouche, F. Functional Integration and Semiclassical Expansions / F. Langouche, D. Roekaerts, E. Tirapegui. – Dordrecht: D. Reidel Pub. Co., 1982. – 315 p. https://doi.org/10.1007/978-94-017-1634-5
9. Wio, H. S. Path Integration to Stochastic Process: an Introduction / Horacio S. Wio. – World Scientific Publishing Company, 2012. – 176 p. https://doi.org/10.1142/8695
10. Bennati, E. A path integral approach to derivative security pricing I: formalism and analytical results / E. Bennati, M. Rosa-Clot, S. Taddei // Int. J. Theor. Appl. Finan. – 1999. – Vol. 2, № 4. – P. 381–407. https://doi.org/10.1142/s0219024999000200
11. Graham, R. Path integral formulation of general diffusion processes / R. Graham // Z. Phys. B: Condens. Matter and Quanta. – 1977. – Vol. 26, № 3. – P. 281–290. https://doi.org/10.1007/bf01312935
12. Graham, R. Lagrangian for diffusion in curved phase space / R. Graham // Phys. Rev. Lett. – 1977. – Vol. 38, № 2. – P. 51–53. https://doi.org/10.1103/physrevlett.38.51
13. Применение функциональных интегралов к стохастическим уравнениям / Э. А. Айрян [и др.] // Мат. моделирование. – 2016. – T. 28, № 11. – C. 113–125.
14. Глимм, Дж. Математические методы квантовой физики. Подход с использованием функциональных интегралов: пер. с англ. / Дж. Глимм, А. Джаффе. – М.: Мир, 1984. – 448 с.
15. Feynman, R. P. Quantum Mechanics and Path Integrals / R. P. Feynman, A. R. Hibbs. – New York: McGraw-Hill, 1965. – 365 p.
16. Крылов, В. И. Вычислительные методы высшей математики: в 2 т. / В. И. Крылов, В. В. Бобков, П. И. Монастырный. – Минск: Выш. шк., 1975. – Т. 2. – 584 с.
17. Кулябов, Д. С. Введение согласованного стохастического члена в уравнение модели роста популяций / Д. С. Кулябов, А. В. Демидова // Вестн. РУДН. Сер. Математика. Информатика. Физика. – 2012. – № 3. – С. 69–78.
18. Влияние стохастизации на одношаговые модели / А. В. Демидова [и др.] // Вестн. РУДН. Сер. Математика. Информатика. Физика. – 2014. – № 1. – С. 71−85.