1. Пашкевич, А. Микрозелень – функциональный продукт XXI века / А. Пашкевич, А. Чайковский // Наука и инновации. – 2021. – № 11 (225). – С. 58–63.
2. Crucial facts about health benefits of popular cruciferous vegetables / S. Manchali, K. N. Chidambara Murthy, B. S. Patil // J. of Functional Foods. – 2012. – Vol. 4, № 1. – P. 94–106. https://doi.org/10.1016/j.jff.2011.08.004
3. Heber, D. Vegetables, fruits and phytoestrogens in the prevention of diseases / D. Heber // J. of Postgraduate Medicine. – 2004. – Vol. 50, № 3. – P. 145–149.
4. Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra / G. Samuolienė [et al.] // Frontiers in Plant Science. – 2019. – Vol. 10. – Art. 1475. https://doi.org/10.3389/fpls.2019.01475
5. Howard, B. V. Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association / B. V. Howard, D. Kritchevsky // Circulation. – 1999. – Vol. 95, № 11. – P. 2591–2593. https://doi.org/10.1161/01.CIR.95.11.2591
6. Microgreens of Brassicaceae: genetic diversity of phytochemical concentrations and antioxidant capacity / Z. Xiao [et al.] // LWT – Food Science a. Technology. – 2018. – Vol. 101. – Р. 731–737. https://doi.org/10.1016/j.lwt.2018.10.076
7. Hacişevki, A. An overview of ascorbic acid biochemistry / A. Hacişevki // J. of Fac. of Pharmacy of Ankara Univ. – 2009. – Vol. 38, № 3. – P. 233–255. https://doi.org/10.1501/Eczfak_0000000528
8. Johnson, E. J. The role of carotenoids in human health / E. J. Johnson // Nutrition in Clinical Care. – 2002. – Vol. 5, № 2. – P. 56–65. https://doi.org/10.1046/j.1523-5408.2002.00004.x
9. Edge, R. The carotenoids as anti-oxidants: a review / R. Edge, D. J. McGarvey, T. G. Truscott // J. Photochemistry a. Photobiology B: Biology. – 1997. – Vol. 41, № 3. – P. 189–200. https://doi.org/10.1016/S1011-1344(97)00092-4
10. Пашкевич, А. М. Микрозелень – новая категория органической овощной продукции / А. М. Пашкевич, А. И. Чайковский, К. И. Беляева // Научно-инновационные основы развития отрасли овощеводства : тез. докл. Междунар. науч.-практ. конф., аг. Самохваловичи, Мин. р-н, 22–24 авг. 2018 г. / Нац. акад. наук Беларуси, Ин-т овощеводства ; редкол.: А. И. Чайковский (гл. ред.) [и др.]. – Самохваловичи, 2018. – С. 25–28.
11. Определение содержания нитратов в семенах, проростках, микрозелени и продукции бобовых овощных культур / А. М. Пашкевич [и др.] // Овощеводство : сб. науч. тр. / Нац. акад. наук Беларуси, Ин-т овощеводства. – Самохваловичи, 2020. – Т. 28. – С. 89–96.
12. Ebert, A. W. Sprouts, microgreens, and edible flowers: the potential for high value specialty produce in Asia / A. W. Ebert // SEAVEG 2012: regional symposium on high value vegetables in Southeast Asia: production, supply and demand, 24–26 January 2012, Chiang Mai, Thailand : proceedings / Thailand Dep. of Agriculture ; ed.: R. Holmer [et al.]. – Thailand, 2012. – P. 216–227.
13. Микрозелень, или система земледелия без почвы / М. И. Иванова [и др.] // Гавриш. – 2016. – № 6. – С. 34–42.
14. Renna, M. Book review: Microgreens: novel fresh and functional food to explore all the value of biodiversity / M. Renna // South Afr. J. of Botany. – 2016. – Vol. 106. – P. 250. https://doi.org/10.1016/j.sajb.2016.05.002
15. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces / E. Pinto [et al.] // J. of Food Comp. a. Analysis. – 2015. – Vol. 37. – Р. 38–43. https://doi.org/10.1016/j.jfca.2014.06.018
16. Ghoora, M. D. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens / M. D. Ghoora, A. C. Haldipur, N. Srividya // J. of Agriculture a. Food Research. – 2020. – Vol. 2. – Art. 100046. https://doi.org/10.1016/j.jafr.2020.100046
17. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity species and the influence of maturity / S. A. Johnson [et al.] // Current Developments in Nutrition. – 2020. – Vol. 5, № 2. – Р. 1–12. https://doi.org/10.1093/cdn/nzaa180
18. Singh, N. Cruciferous microgreens: growing performance and their scope as super foods at high altitude locations / N. Singh, S. Rani, A. Mishra // Progressive Horticulture. – 2019. – Vol. 51, № 1. – Р. 41–44. https://doi.org/10.5958/2249-5258.2019.00004.6
19. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens / B. de la Fuente [et al.] // Foods. – 2019. – Vol. 8, N 7. – Art. 250. https://doi.org/10.3390/foods8070250
20. Functional quality in novel food sources: genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species / M. C. Kyriacou [et al.] // Food Chemistry. – 2019. – Vol. 277. – Р. 107–118. https://doi.org/10.1016/j.foodchem.2018.10.098
21. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens / C. Jones-Baumgardt [et al.] // HortScience. – 2019. – Vol. 54, № 7. – Р. 1168–1174. https://doi.org/10.21273/HORTSCI13788-18
22. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting / Q. Ying [et al.] // Scientia Horticulturae. – 2020. – Vol. 259. – Art. 108857. https://doi.org/10.1016/j.scienta.2019.108857
23. Sprouts and microgreens: trends, opportunities, and horizons for novel research / A. Galieni [et al.] // Agronomy. – 2020. – Vol. 10, № 9. – Art. 1424. https://doi.org/10.3390/agronomy10091424
24. Teng, J. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens / J. Teng, P. Liao, M. Wang // Food & Function. – 2021. – Vol. 12, № 5. – Р. 1914–1932. https://doi.org/10.1039/d0fo03299a
25. Meng, Q. Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale / Q. Meng, N. Kelly, E. S. Runkle // Environmental a. Experimental Botany. – 2019. – Vol. 162. – Р. 383–391. https://doi.org/10.1016/j.envexpbot.2019.03.016
26. Влияние узкополосного красно-синего освещения на пигментный комплекс некоторых декоративных растений / А. А. Анисимов [и др.] // Докл. ТСХА. – 2015. – Вып. 287, ч. 1. – С. 9–12.
27. Оптимизация светодиодной системы освещения витаминной космической оранжереи / И. О. Коновалова [и др.] // Авиакосм. и экол. медицина. – 2016. – Т. 50, № 3. – С. 17–22.
28. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens / X. Zhang [et al.] // Trends in Food Science & Technology. – 2020. – Vol. 99. – Р. 203–216. https://doi.org/10.1016/j.tifs.2020.02.031
29. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens / A. Lobiuc [et al.] // Molecules. – 2017. – Vol. 22, № 12. – Art. 2111. https://doi.org/10.3390/molecules22122111
30. Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse / A. Brazaitytė [et al.] // Acta Horticulturae. – 2018. – № 1227. – P. 507–516. https://doi.org/10.17660/actahortic.2018.1227.64
31. Comparison of LED and HPS illumination effects on cultivation of red pak choi microgreens under indoors and greenhouse conditions / A. Brazaitytė [et al.] // Acta Horticulturae. – 2020. – № 1287. – P. 395–402. https://doi.org/10.17660/actahortic.2020.1287.51
32. Kong, Y. Growth and morphology responses to narrow-band blue light and its co action with low-level UVB or green light: a comparison with red light in four microgreen species / Y. Kong, Y. Zheng // Environmental a. Experimental Botany. – 2020. – Vol. 178. – Art. 104189. https://doi.org/10.1016/j.envexpbot.2020.104189
33. Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within brassica microgreens / J. K. Craver [et al.] // J. of the Amer. Soc. for Horticultural Science. – 2017. – Vol. 142, № 1. – P. 3–12. https://doi.org/10.21273/JASHS03830-16