Решение смешанной задачи для уравнения типа Клейна–Гордона–Фока с интегральными условиями в случае неоднородных условий согласования

Корзюк В. И., Столярчук И. И.
2019

В данном сообщении рассматривается классическое решение смешанной задачи с интегральными условиями для уравнения типа Клейна–Гордона–Фока в полуполосе в случае, когда выполняются неоднородные условия согласования. Для рассматриваемой задачи строится эквивалентная задача сопряжения, в которой условия сопряжения задаются на характеристиках. Построенные неоднородные условия согласования однозначно опре де ляют величину разрывов решения или его производных на характеристиках. Данные разрывы могут как сохраняться, так и сглаживаться с ростом аргумента по времени в зависимости от ядра интегрального оператора в нелокальных условиях. При решении указанной задачи возникают эквивалентные интегральные уравнения Вольтерры второго рода и их системы. Для полученных интегральных уравнений и систем существует единственное решение в классе дважды непрерывно дифференцируемых функций при заданной гладкости данных. При рассмотрении задачи использовался метод характеристик, который позволяет строить как точные, так и приближенные решения. Точные решения могут быть найдены в том случае, если удается разрешить эквивалентные интегральные уравнения Вольтерры. В противном случае можно найти приближенное решение задачи либо в аналитическом, либо в численном виде. При построении приближенного решения существенными оказываются условия согласования, которые необходимо учитывать при использовании численных методов решения задачи.

Корзюк В. И., Столярчук И. И. Решение смешанной задачи для уравнения типа Клейна–Гордона–Фока с интегральными условиями в случае неоднородных условий согласования. Доклады Национальной академии наук Беларуси. 2019;63(2):142-149. https://doi.org/10.29235/1561-8323-2019-63-2-142-149
Цитирование

Список литературы

Похожие публикации

Источник