1. Seber G. A. F., Lee A. J. Linear Regression Analysis. John Wiley & Sons, 2012. 592 p. https://doi.org/10.1002/9780471722199
2. Draper N. R., Smith H. Applied Regression Analysis. John Wiley & Sons, 1998. 744 p. https://doi.org/10.1002/9781118625590
3. Mukha V. S. Multidimensional-matrix polynomial regression analysis. Estimations of the parameters. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2007, no. 1, pp. 45–51 (in Russian).
4. Mukha V. S. Multidimensional-matrix linear regression analysis: distributions and properties of the parameters. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2014, no. 2, pp. 71–81 (in Russian).
5. Hermite M. Sur Un Nouveau Développement en Série Des Fonctions. Comptes rendus des séances de l’Académie des sciences, vol. 58. Paris, 1864, pp. 93–100, 266–273 (in France).
6. Appel P., Kampé de Fériet J. Fonctions Hypergéométriques et Hypersphériques: polynomes d’Hermite. GauthierVillars, 1926. 434 p.
7. Sirazhdinov S. H. To the theory of the multivariate Hermite polynomials. Izvestiya Instituta matematiki i mekhaniki Akademii nauk Uzbekskoi SSR [Proceedings of the Institute of Mathematics and Mechanics of the Akademy of Sciences of the UzSSR], 1949, vol. 5, pp. 70–95 (in Russian).
8. Mysovskikh I. P. Interpolation Cubature Formulae. Moscow, Nauka Publ., 1981. 336 p. (in Russian).
9. Suetin P. K. Orthogonal Polynomials in Two Variables. Moscow, Nauka Publ., 1988. 384 p. (in Russian).
10. Dunkl C. F. , Yuan Xu. Orthogonal Polynomials of Several Variables. 2nd ed. Cambridge University Press, 2014. 450 p.
11. Sokolov N. P. Introduction to the Theory of Multidimensional Matrices. Kiev, Naukova Dumka Publ., 1972. 176 p. (in Russian).
12. Mukha V. S. Analysis of the Multidimensional Data. Minsk, Technoprint Publ., 2004. 368 p. (in Russian).
13. Mukha V. S. Multidimensional-matrix approach to the theory of the orthogonal systems of the polynomials of the vector variable. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2001, no. 2, pp. 64–68 (in Russian).
14. Mukha V. S. Systems of the polynomials orthogonal with discrete weight. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2004, no. 1, pp. 69–73 (in Russian).
15. Mukha V. S. Fourier series for the multidimensional-matrix functions of the vector variable. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2024, vol. 60, no. 1, pp. 15–28 (in Russian). https://doi.org/10.29235/1561-24302024-60-1-15-28
16. Mukha V. S. Bayesian multidimensional-matrix polynomial empirical regression. Control and Cybernetics, 2020, vol. 49, no. 3, pp. 291–315. https://doi.org/10.1007/s10559-007-0065-3
17. Mukha V. S. The best polynomial multidimensional-matrix regression. Cybernetics and System Analysis, 2007, vol. 43, no. 3, pp. 427–432. https://doi.org/10.1007/s10559-007-0065-3
18. Mukha V. S. multidimensional-matrix linear regression analysis: distributions and properties of the parameters. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2014, no. 2, pp. 71–81 (in Russian).
19. Rao C. R. Linear Statistical Inference and its Applications. John Wiley & Sons, Inc., 1973. 648 p. https://doi.org/10.1002/9780470316436
20. Mukha V. S., Korchits K. S. Horner scheme for multidimensional-matrix polynomials. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming, 2005, vol. 6, pp. 61–65 (in Russian).