Крот А. М., Сычев В. А. Спектральный анализ хаотических колебаний в имитационной модели схемы Чжуа, разработанной на основе матричной декомпозиции. Информатика. 2019;16(1):7-23.
1. Krot, A. M. Chaotic dynamic methods based on decomposition of vector functions in vector-matrix series into state-space / A. M. Krot // Melecon 2000 : Proc. 10th Mediterranean Electrotechnical Conf., Lemesos, Cyprus, 29–31 May 2000. – Lemesos, 2000. – Vol. 2. – P. 643–646.
2. Krot, A. M. The decomposition of vector functions in vector-matrix series into state-space of nonlinear dynamic system / A. M. Krot // EUSIPCO–2000 : Proc. X European Signal Processing Conf., Tampere, Finland, 4–8 Sept. 2000. – Tampere, 2000. – Vol. 3. – P. 2453–2456.
3. Krot, A. M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system / A. M. Krot // Nonlinear Phenomena in Complex Systems. – 2001. – Vol. 4, no. 2. – P. 106–115.
4. Krot, A. M. Application of expansion into matrix to analysis of attractors of complex nonlinear dynamical systems / A. M. Krot // DSP–2002 : Proc. 14th IEEE Intern. Conf. on Digital Signal Processing, Santorini, Greece, 1–3 July 2002. – Santorini, 2002. – P. 959–962.
5. Krot, A. M. Minimal attractor embedding estimation based on matrix decomposition for analysis of dynamical systems / A. M. Krot, H. B. Minervina // Nonlinear Phenomena in Complex Systems. – 2002. – Vol. 5, no. 2. – P. 161–172.
6. Крот, А. М. Анализ аттракторов сложных нелинейных динамических систем на основе матричных рядов в пространстве состояний / А. М. Крот // Информатика. – 2004. – № 1(1). – С. 7–16.
7. Крот, А. М. Разработка и исследование моделей сложных динамических систем на основе методов вход-выходных представлений и пространства состояний / А. М. Крот // Информатика. – 2004. – № 4(4). – С. 95–108.
8. Krot, A. M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals / A. M. Krot // DSP–2009 : Proc. 16th IEEE Intern. Conf. on Digital Signal Processing, Thira, Santorini, Greece, 5–7 July 2009. – Santorini, 2009. – P. 5–10.
9. Krot, A. M. Bifurcation analysis of attractors of complex systems based on matrix decomposition theory /
10. A. M. Krot // IEM 2011 : Proc. of IEEE Intern. Conf. on Industrial Engineering and Management, Zhengzhou, China, Aug. 12–14 2011. – Zhengzhou, 2011. – P. 7–13.
11. Krot, A. M. Nonlinear analysis of the Hopfield network dynamical states using matrix decomposition theory / A. M. Krot, R. A. Prakapovich // Chaotic Modeling and Simulation. – 2013. – Vol. 1. – P. 133–146.
12. Крот, А. М. Анализ хаотических режимов функционирования схемы Чжуа с гладкой нелинейностью на основе метода матричной декомпозиции / А. М. Крот, В. А. Сычев // Известия Национальной академии наук Беларуси. Сер. физ.-техн. наук. – 2018. – № 4. – C. 501–512.
13. Matsumoto, T. Chaos in electronic circuits / T. Matsumoto // Proceedings of the lEEE. – 1987. – Vol. 75, no. 3. – P. 1033–1057.
14. Ogorzalek, M. Exploring chaos in Chua's circuit via unstable periodic orbits / M. Ogorzalek, Z. Galias, L. Chua // IEEE Intern. Symp. on Circuits and Systems (ISCAS '93), Chicago, Illinois. – Chicago, 1993. – P. 2608–2611.
15. Zhong, G. Implementation of Chua’s circuit with a cubic nonlinearity / G. Zhong // IEEE Transactions on Circuits and Systems. – 1994. – Vol. 41, no. 12. – P. 934–941.
16. Galias, Z. Rigorous analysis of Chua’s circuit with a smooth nonlinearity / Z. Galias // IEEE Transactions on Circuits and Systems I: Regular Papers. – 2016. – Vol. 63, no. 12. – P. 2304–2312.
17. A fast and simple implementation of Chua's oscillator with "cubic-like" nonlinearity / K. O'Donoghue [et al.] // International Journal of Bifurcation and Chaos. – 2005. – Vol. 15, no. 9. – P. 2959–2971.
18. Srisuchinwong, B. Implementation of Chua's chaotic oscillator using "roughly-cubic-like" nonlinearity / B. Srisuchinwong, W. San-um // 4th Intern. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiangrai, Thailand, 9–12 May 2007. – Chiangrai, 2007. – P. 36–37.
19. Galias, Z. On the existence of chaos in the Chua's circuit with a smooth nonlinearity / Z. Galias // IEEE Intern. Symp. on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. – Montreal, 2016. – . 1106–1109.
20. Ландау, Л. Д. К проблеме турбулентности / Л. Д. Ландау // ДАН СССР. – 1944. – Т. 44, № 8. – С. 339–342.
21. Landau, L. D. Fluid Mechanics / L. D. Landau, E. M. Lifschitz. – Oxford : Pergamon, 1959. – Vol. XIII. – 539 р.
22. Ruelle, D. On the nature of turbulence / D. Ruelle, F. Takens // Communications in Mathematical Physics. – 1971. – No. 21. – Р. 167–192.
23. Ruelle, D. Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m ≥ 3 / D. Ruelle, F. Takens, S. Newhouse // Communications in Mathematical Physics. – 1978. – No. 64. – P. 35–40.
24. Bergé, . L'ordre dans le chaos: vers une approche déterministe de la turbulence / P. Bergé, Y. Pomeau, C. Vidal. – Paris : Hermann, 1988. – 353 p.
25. Moon, F. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers / F. Moon. – John Wiley&Son, 2004. – 309 p.
26. Siderskiy, V. Chua’s circuit for experimenters using readily available parts from a hobby electronics store / V. Siderskiy, A. Mohammed, V. Kapila // 122nd ASEE Annual Conf. & Exposition. – Seattle : American Society for Engineering Education, 2015. – P. 26.384.1–26.384.15.
27. Galias, Z. The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems – and how to avoid them / Z. Galias // IEEE Circuits and Systems Magazine. – 2013. – Vol. 13, no. 3. – P. 35–52.