1. Krot, A. M. Chaotic dynamic methods based on decomposition of vector functions in vector-matrix series into statespace / A. M. Krot // Melecon 2000: Proc. 10th Mediterranean Electrotechnical Conference, Lemesos, Cyprus, May 29–31, 2000. – Nicosia, Violaris Press Ltd., 2000. – Vol. 2. – P. 643–646. https://doi.org/10.1109/melcon.2000.880016
2. Krot, A. M. The decomposition of vector functions in vector-matrix series into state-space of nonlinear dynamic system / A. M. Krot // EUSIPCO-2000: Proc. X European Signal Processing Conference, Tampere, Finland, September 4–8, 2000. – Tampere, 2000. – Vol. 3. – P. 2453–2456.
3. Krot, A. M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system / A. M. Krot // Nonlinear Phenomena in Complex Systems. – 2001. – Vol. 4, № 2. – P. 106–115.
4. Krot, A. M. Application of expansion into matrix to analysis of attractors of complex nonlinear dynamical systems / A. M. Krot // DSP-2002: Proc. 14th IEEE International Conference on Digital Signal Processing, Santorini, Greece, July 1–3, 2002. – Santorini, 2002. – P. 959–962. https://doi.org/10.1109/icdsp.2002.1028249
5. Krot, A. M. Minimal attractor embedding estimation based on matrix decomposition for analysis of dynamical systems / A. M. Krot, H. B. Minervina // Nonlinear Phenomena in Complex Systems. – 2002. – Vol. 5, № 2. – P. 161–172.
6. Крот, А. М. Анализ аттракторов сложных нелинейных динамических систем на основе матричных рядов в пространстве состояний / А. М. Крот // Информатика. – 2004. – № 1. – С. 7–16.
7. Крот, А. М. Разработка и исследование моделей сложных динамических систем на основе методов вход-выходных представлений и пространства состояний / А. М. Крот // Информатика. – 2004. – № 4. – С. 95–108.
8. Krot, A. M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals / A. M. Krot // DSP-2009: Proc. 16th IEEE International Conference on Digital Signal Processing, Thira, Santorini, Greece, July 5–7, 2009. – Santorini, 2009. – P. 1–5. https://doi.org/10.1109/icdsp.2009.5201123
9. Krot, A. M. Bifurcation analysis of attractors of complex systems based on matrix decomposition theory / A. M. Krot // IEM 2011: Proc. of IEEE Intern. Conference on Industrial Engineering and Management, Zhengzhou, China, August 12–14, 2011. – Wuhan, 2011. – P. 1–5. https://doi.org/10.1109/icmss.2011.5999350
10. Krot, A. M. Nonlinear analysis of the Hopfield network dynamical states using matrix decomposition theory / A. M. Krot,
11. R. A. Prakapovich // Chaotic Modeling and Simulation. – 2013. – Vol. 1. – P. 133–146.
12. Matsumoto, T. Chaos in Electronic Circuits / Т. Matsumoto // Proceedings of the IEEE. – 1987. – Vol. 75, Iss. 8. – P. 1033–1057. https://doi.org/10.1109/PROC.1987.13848
13. Ogorzalek, M. Exploring Chaos in Chua’s Circuit via Unstable Periodic Orbits / M. Ogorzalec, Z. Galias, L. Chua // Circuits and Systems, ISCAS’93, IEEE International Symposium on., 1993. – Chicago, IL, USA, 1993. – P. 2608–2611. https:// doi.org/10.1109/iscas.1993.693226
14. Zhong, G.-Q. Implementation of Chua’s circuit with a cubic nonlinearity / G.-Q. Zhong // IEEE Transactions on Circuits and Systems-I. Theories and Applications. – 1994. – Vol. 41, № 12. – P. 934–941. https://doi.org/10.1109/81.340866
15. Galias, Z. Rigorous Analysis of Chua’s Circuit with a Smooth Nonlinearity / Z. Galias // IEEE Transactions on Circuits and Systems I: Regular Papers. – 2016. – Vol. 63, № 12. – P. 2304–2312. https://doi.org/10.1109/tcsi.2016.2613022
16. O’Donoghue, K. A fast and simple implementation of Chua’s oscillator using a “cubic-like” Chua diode 2005 / K. O’Donoghue, M. P. Kennedy, P. Forbes // Proceedings of the 2005 European Conference on Circuit Theory and Design, Cork, Ireland, 2 Sept. 2005. – Vol. 2. https://doi.org/10.1109/ECCTD.2005.1522998
17. Srisuchinwong, B. Implementation of Chua’s Chaotic Oscillator Using “Roughly-Cubic-Like” Nonlinearity / B. Srisuchinwong // 4th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, May 9–12, 2007. – Chiang Rai, 2007. – P. 36–37.
18. Galias, Z. On the existence of chaos in the Chua’s circuit with a smooth nonlinearity / Z. Galias // IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. – Montreal, QC, Canada, 2016. – P. 1106–1109. http://dx.doi.org/10.1109/ISCAS.2016.7527438
19. Tietze, U. Electronic Circuits: Handbook for Design and Application / U. Tietze, C. Schenk, E. Gamm. – 2nd ed. – Berlin; Heidelberg: Springer-Verlag, 2008. – 1543 p. https://doi.org/10.1007/978-3-540-78655-9
20. Galias, Z. The Dangers of Rounding Errors for Simulations and Analysis of Nonlinear Circuits and Systems – and How to Avoid Them / Z. Galias // IEEE Circuits and Systems Magazine. – 2013. – Vol. 13, № 3. – P. 35–52. https://doi. org/10.1109/MCAS.2013.2271444
21. Ландау, Л. Д. К проблеме турбулентности / Л. Д. Ландау // Докл. Акад. наук СССР. – 1944. – Т. 44, № 8. – C. 339.
22. Ландау, Л. Д. Теоретическая физика: учеб. пособие для студентов физ. специальностей ун-тов: в 10 т. / Л. Д. Ландау, Е. М. Лифшиц; под ред. Л. П. Питаевского. – 3-е изд., перераб. – М.: Наука, Гл. ред. физ.-мат. лит., 1946. – Т. 6: Гидродинамика. – 736 с.