1. Alonzo, T. A. Clinical prediction models: a practical approach to development, validation, and updating: by Ewout W. Steyerberg / T. A. Alonzo // American J. of Epidemiology. – 2009. – Vol. 170, iss. 4. – Р. 528. https://doi.org/10.1093/aje/kwp129
2. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD) / C. O'Mahony [et al.] // European Heart J. – 2014. – Vol. 35, no. 30. – Р. 2010–2020.
3. Scrucca, L. Competing risk analysis using R: an easy guide for clinicians / L. Scrucca, A. Santucci, F. Aversa // Bone Marrow Transplantation. – 2007. – Vol. 40, no. 4. – P. 381–387.
4. Prognostic models with competing risks: methods and application to coronary risk prediction / M. Wolbers [et al.] // Epidemiology. – 2009. – Vol. 20, iss. 4 – Р. 555–561.
5. Cox, D. R. Regression models and life‐tables / D. R. Cox // J. of the Royal Statistical Society: Series B (Methodological). – 1972. – Vol. 34, no. 2. – Р. 187–202.
6. Hosmer, Jr. D. W. Applied Survival Analysis: Regression Modeling of Time-to-Event Data / Jr. D. W. Hosmer, S. Lemeshow, S. May. – John Wiley & Sons, 2011. – 416 р.
7. Therneau, T. Using time dependent covariates and time dependent coefficients in the cox model / T. Therneau, C. Crowson, E. Atkinson // Survival Vignettes. – 2017. – Vol. 2, no. 3. – Р. 1–25.
8. Murphy, S. A. Time-dependent coefficients in a Cox-type regression model / S. A. Murphy, P. K. Sen // Stochastic Processes and their Applications. – 1991. – Vol. 39, no. 1. – Р. 153–180.
9. Thomas, L. Tutorial: survival estimation for Cox regression models with time-varying coefficients using SAS and R / L. Thomas, E. M. Reyes // J. of Statistical Software. – 2014. – Vol. 61. – Р. 1–23.
10. Redmond, C. The methodologic dilemma in retrospectively correlating the amount of chemotherapy received in adjuvant therapy protocols with disease-free survival / C. Redmond, B. Fisher, H. S. Wieand // Cancer Treatment Reports. – 1983. – Vol. 67, no. 6. – Р. 519–526.
11. Suissa, S. Immortal time bias in pharmacoepidemiology / S. Suissa // American J. of Epidemiology. – 2008. – Vol. 167, no. 4. – Р. 492–499.
12. Fine, J. P. A proportional hazards model for the subdistribution of a competing risk / J. P. Fine, R. J. Gray // J. of the American Statistical Association. – 1999. – Vol. 94, no. 446. – Р. 496–509.
13. Li, J. Checking Fine and Gray subdistribution hazards model with cumulative sums of residuals / J. Li, T. H. Scheike, M. J. Zhang // Lifetime Data Analysis. – 2015. – Vol. 21, no. 2. – Р. 197–217.
14. A detailed analysis of the recurrence timing and pattern after curative surgery in patients undergoing neoadjuvant therapy or upfront surgery for gastric cancer / A. Agnes [et al.] // J. of Surgical Oncology. – 2020. – Vol. 122, no. 2. – Р. 293–305.
15. Incidence, time course and independent risk factors for metachronous peritoneal carcinomatosis of gastric origin – a longitudinal experience from a prospectively collected database of 1108 patients / F. Seyfried [et al.] // BMC Cancer. – 2015. – Vol. 15. – Р. 1–10.
16. Lauren histologic type is the most important factor associated with pattern of recurrence following resection of gastric adenocarcinoma / J. H. Lee [et al.] // Annals of Surgery. – 2018. – Vol. 267, no. 1. – Р. 105.
17. Reutovich, M. Y. Hyperthermic intraperitoneal chemotherapy in prevention of gastric cancer metachronous peritoneal metastases: a systematic review / M. Y. Reutovich, O. V. Krasko, O. G. Sukonko // J. of Gastrointestinal Oncology. – 2021. – Vol. 12, suppl. 1. – Р. S5–S17. https://doi.org/10.21037/jgo-20-129
18. Analysis and external validation of a nomogram to predict peritoneal dissemination in gastric cancer / X. Chen [et al.] // Chinese J. of Cancer Research. – 2020. – Vol. 32, no. 2. – Р. 197–207.
19. Staging of peritoneal carcinomatosis: enhanced CT vs. PET/CT / C. Dromain [et al.] // Abdominal Imaging. – 2008. – Vol. 33. – Р. 87–93.
20. Added value of pretreatment 18F-FDG PET/CT for staging of advanced gastric cancer: comparison with contrast-enhanced MDCT / Y. Kawanaka [et al.] // European J. of Radiology. – 2016. – Vol. 85, no. 5. – Р. 989–995.
21. Peritoneal recurrence in gastric cancer following curative resection can be predicted by postoperative but not preoperative biomarkers: a single-institution study of 320 cases / F. Wu [et al.] // Oncotarget. – 2017. – Vol. 8, no. 44. – Р. 78120.
22. Ревтович, М. Ю. Местнораспространенный рак желудка: современные направления радикального лечения и прогнозирование отдаленных результатов : монография / М. Ю. Ревтович, О. В. Красько. – Минск : БелМАПО, 2022. – 217 с.
23. Результаты радикального лечения инфильтративных форм рака желудка с применением перфузионной термохимиотерапии / М. Ю. Ревтович [и др.] // Евразийский онкологический журнал. – 2022. – Т. 10, № 2. – С. 107–117.
24. Ревтович, М. Ю. Интраоперационная оценка риска развития канцероматоза после радикального хирургического лечения рака желудка / М. Ю. Ревтович, О. В. Красько // Онкология и радиология Казахстана. – 2020. – № 2(56). – С. 26–30. https://doi.org/10.52532/2521-6414-2020-2-56-26-30
25. Reutovich, M. Prophylactic hyperthermic intraperitoneal chemotherapy in gastric cancer management: short- and long-term outcomes of a prospective randomized study / M. Reutovich, O. Krasko // Oncology in Clinical Practice. – 2021. – Vol. 17, no. 5. – Р. 187–193. https://doi.org/10.5603/OCP.2021.0028
26. Reutovich, M. Yu. Efficacy of adjuvant systemic chemotherapy combined with radical surgery and hyperthermic intraperitoneal chemotherapy in gastric cancer treatment / M. Yu. Reutovich, O. V. Krasko, O. G. Sukonko // Indian J. of Surgical Oncology. – 2020. – Vol. 11. – P. 337–343. https://doi.org/10.1007/s13193-020-01102-w
27. Schoenfeld, D. Partial residuals for the proportional hazards regression model / D. Schoenfeld // Biometrika. – 1982. – Vol. 69, no. 1. – Р. 239–241.
28. Алгоритмы диагностики и лечения злокачественных новообразований : клинический протокол : утв. Постановлением М-ва здравоохранения Респ. Беларусь № 60 от 06.07.2018 г. / под ред. О. Г. Суконко, С. А. Красного. – Минск : Профессиональные издания, 2019. – С. 97–110.
29. Heagerty, P. J. Time‐dependent ROC curves for censored survival data and a diagnostic marker / P. J. Heagerty, T. Lumley, M. S. Pepe // Biometrics. – 2000. – Vol. 56, no. 2. – Р. 337–344.
30. Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis / F. E. Harrell. – N. Y. : Springer, 2001. – 600 р.
31. Steyerberg, E. W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating / E. W. Steyerberg. – Springer, 2009. – 528 р.
32. Vickers, A. J. Decision curve analysis: a novel method for evaluating prediction models / A. J. Vickers, E. B. Elkin // Medical Decision Making. – 2006. – Vol. 26, no. 6. – Р. 565–574.
33. Vickers, A. J. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests [Electronic resource] / A. J. Vickers, B. Van Calster, E. W. Steyerberg // BMJ. – 2016. – Vol. 352. – Mode of access: https://www.bmj.com/content/bmj/352/bmj.i6.full.pdf. – Date of access: 12.09.2023.
34. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers / A. J. Vickers [et al.] // BMC Medical Informatics and Decision Making. – 2008. – Vol. 8. – Р. 1–17.