Meng L. , Xia Z. , Zhang Y. , Tan Y. , Yang S. Наносенсор из легированных азотом углеродных точек для высокоселективного обнаружения рибофлавина. Журнал прикладной спектроскопии. 2022;89(6):904.
1. X. Zhang, M. Jiang, N. Niu, et al., Chem. Sus. Chem., 11, No. 1, 11–24 (2018).
2. L. Zheng, Y. Chi, Y. Dong, et al., J. Am. Chem. Soc., 131, No. 13, 4564–4565 (2009).
3. A. B. Bourlinos, D. Petridis, J. Mater. Sci., 38, No. 5, 959–963 (2003).
4. Y. Ding, J. Zheng, J. Wang, et al., J. Mater. Chem. C, 7, No. 6, 1502–1509 (2019).
5. Q. Yang, J. Duan, W. Yang, et al., Appl. Surface Sci., 1079–1085 (2018).
6. J. B. Essner, J. A. Kist, L. Polo-Parada, et al., Chem. Mater., 30, No. 6, 1878–1887 (2018).
7. J. Zhu, H. Shao, X. Bai, et al., Nanotechnology, 29, No. 24, 245702 (2018).
8. K. P. Ji, Y. Cao, C. X. Zhang, et al., Mycologic. Prog., 10, 293–300 (2011).
9. C. X. Zhang, M. X. He, Y. Cao, et al., Mycologia, 107, No. 1, 12–20 (2015).
10. R. Sanmee, B. Dell, P. Lumyong, et al., Food Chem., 82, No. 4, 527–532 (2003).
11. P. Heinemann, J. Rammeloo, Mycotaxon, 15, 384–404 (1982).
12. R. Wading, Mycologic. Res., 105, No. 12, 1440–1448 (2001).
13. V. M. Bandala, L. Montoya, D. Jarvio, Persoonia, 18, No. 3, 365–380 (2004).
14. P. S. Barbara, New Zealand J. Botany, 25, No. 2, 185–215 (1987).
15. Z. Sun, X. Li, Y. Wu, et al., New J. Chem., 42, No. 6, 4603–4611 (2018).
16. F. Yuan, T. Yuan, L. Sui, et al., Nature Commun., 9, No. 1, 1–11 (2018).
17. K. Jiang, Y. Wang, X. Gao, et al., Angew. Chem. Int. Ed., 57, No. 21, 6216–6220 (2018).
18. Z. Wei, B. Wang, Y. Liu, et al., New J. Chem., 43, No. 2, 718–723 (2019).
19. K. Kim, J. Kim, J. Nanosci. Nanotech., 18, No. 2, 1320–1322 (2018).
20. L. Liu, H. Gong, D. Li, et al., J. Nanosci. Nanotech., 18, No. 8, 5327–5332 (2018).
21. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, et al., Biosens. Bioelectron., 99, 303–311 (2018).
22. B. T. Hoan, P. D. Tam, V. H. Pham, J. Nanotech. (2019).
23. Y Song, X Yan, Z Li, et al., J. Mater. Chem. B, 6, No. 19, 3181–3187 (2018).
24. A. K. Singh, V. K. Singh, M. Singh, et al., J. Photochem. Photobiol. A: Chem., 376, 63–72 (2019).
25. M. Shahshahanipour, B. Rezaei, A. A. Ensafi, et al., Mater. Sci. Eng. C, 98, 826–833 (2019).
26. S. K. Bajpai, A. D’Souza, B. Suhail, Int. Nano Lett., 9, No. 3, 203–212 (2019).
27. S. Nandi, M. Ritenberg, R. Jelinek, Analyst, 140, No. 12, 4232–4237 (2015).
28. W. Gao, S. Thamphiwatana, P. Angsantikul, et al., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 6, No. 6, 532–547.
29. A. Rodriguez-Rojas, J. Rodriguez-Beltran, A. Couce, J. Blázquez., Int. J. Med. Microbiol., 303, No. 6–7, 293–297 (2013).
30. L. Xiao, H. Sun, Nanoscale Horizons, 3, No. 6, 565–597 (2018).
31. H. Ding, J.-S. Wei, N. Zhong, et al., Langmuir, 33, No. 44, 12635–12642 (2017).
32. V. Sharma, P. Tiwari, S. M. Mobin, J. Mater. Chem. B, 5, No. 45, 8904–8924 (2014).
33. L. Wang, H. S. Zhou, Anal. Chem., 86, No. 18, 8902–8905 (2014).
34. D. B. Mccormick, Nutr. Rev., 30, No. 4, 75–79 (1972).
35. M. Kilic, B. Ensing, Phys. Chem. Chem. Phys., 16, No. 35, 18993–19000 (2014).
36. C. J. Bates, A. M. Prentice, A. A. Paul, et al., Trans. R Soc. Trop. Med. Hyg., 76, No. 2, 253–258 (1982).
37. P. A. Prasad, M. S. Bamji, A. V. Lakshmi, et al., Nutr. Res., 10, No. 3, 275–281 (1990).
38. M. J. Soares, K. Satyanarayana, M. S. Bamji, et al., Br. J. Nutr., 69, No. 2, 541–551 (1993).
39. J. Chen, B. Q. Li, Y. Q. Cui, et al., J. Food Compos. Anal., 41, 122–128 (2015).
40. I. Márqucz-Sillero, S. Cárdenas, M. Valcárcel, J. Chromatogr. A, 1313, 253–258 (2013).
41. J. Eiff, Y. B. Monakhova, B. Diehl, J. Agric. Food Chem., 63, No. 12, 3135–3143 (2015).