О разрешимости и построении решения задачи Валле – Пуссена для матричного уравнения Ляпунова второго порядка с параметром
Рассматриваются вопросы конструктивного анализа краевой задачи Валле – Пуссена для линейного матричного дифференциального уравнения Ляпунова второго порядка с параметром и переменными коэффициентами. Исходная задача сведена к эквивалентной интегральной задаче, для исследования разрешимости которой применяется модификация обобщенного принципа сжимающих отображений. Установлена связь используемого подхода с методом функций Грина. Получены коэффициентные достаточные условия однозначной разрешимости этой задачи. С помощью метода малого параметра Ляпунова – Пуанкаре разработан алгоритм построения решения. Исследованы сходимость, скорость сходимости этого алгоритма и дана конструктивная оценка области локализации решения. В качестве иллюстрации применения полученных результатов рассмотрена линейная задача стационарной теплопроводности для цилиндрической стенки, а также двумерная матричная модельная задача. С помощью разработанного общего алгоритма построены аналитические приближенные решения этих задач, и на основе их точных решений проведен сравнительный численный анализ.