1. Zhuravlev Y. I. On the algebraic approach to solving problems of recognition and classification. Problems of cybernetics, Moscow, Nauka, 1978, vol. 33, рр. 5–68.
2. Haixiang G., Shang J., Mingyun G., Yuanyue H., Bing G. Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 2017, vol. 73, рр. 220–239.
3. Choi S. S., Cha S. H., Tappert C. C. A survey of binary similarity and distance measures. Journal of Systemics, Cybernetics and Informatics, 2010, vol. 8(1), рр. 43–48.
4. Canbek G., Sagiroglu S., Temizel T. T., Baykal N. Binary classification performance measures/metrics: A comprehensive visualized roadmap to gain new insights. International Conference on Computer Science and Engineering, Antalya, Turkey, 5–8 October 2017. Antalya, 2017, рр. 821–826.
5. Sokolova M., Lapalme G. A systematic analysis of performance measures for classification tasks. Information Processing & Management, 2009, vol. 45, no. 4, рр. 427–437.
6. Valverde-Albacete F. J., Peláez-Moreno C. 100 % classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox. PLoS One, 2014, vol. 9(1), 10 р. https://doi.org/10.1371/journal.pone.0084217
7. Powers D. M. What the F-measure doesn't measure: Features, Flaws, Fallacies and Fixes, 2015. Available at: https://arxiv.org/abs/1503.06410 (accessed 17.11.2019).
8. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters, 2006, vol. 27, no. 8, рр. 861–874.
9. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 1960, vol. 20, no. 1, рр. 37–46.
10. Matthews B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta – Protein Structure, 1975, vol. 405, no. 2, рр. 442–451.
11. Wei J. M., Yuan X. J., Hu Q. H., Wang S. Q. A novel measure for evaluating classifiers. Expert Systems with Applications, 2010, vol. 37, no. 5, рр. 3799–3809.
12. Blakeley D. D., Oddone E. Z., Hasselblad V., Simel D. L., Matchar D. B. Noninvasive carotid artery testing: a meta-analytic review. Annals of Internal Medicine, 1995, vol. 122, no. 5, рр. 360–367.
13. Youden W. J. Index for rating diagnostic tests. Cancer, 1950, vol. 3, no. 1, рр. 32–35.
14. Glas A. S., Lijmer J. G., Prins M. H., Bonsel G. J., Bossuyt P. M. The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology, 2003, vol. 56, no. 11, рр. 1129–1135.
15. Davis J., Goadrich M. The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd International Conference on Machine Learning, 25–29 June 2006, Pittsburgh, Pennsylvania, USA. Pittsburgh, 2006, рр. 233–240.
16. Boughorbel S., Jarray F., El-Anbari M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PloS One, 2017, vol. 12(6). https://doi.org/10.1371/journal.pone.0177678
17. Jurman G., Riccadonna S., Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PloS One, 2012, vol. 7, no. 8, e41882. https://doi.org/10.1371/journal.pone.0041882
18. Pepe M. S., Janes H., Longton G., Leisenring W., Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. American Journal of Epidemiology, 2004, vol. 159, no. 9, рр. 882–890.
19. Mower J. P. PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics, 2005, vol. 6, art. 96, рр. 1–15. https://doi.org/10.1186/1471-2105-6-96