1. Gerhard F., Harlalka A., Suvanam R. The coming opportunity in consumer lending. McKinsey Quarterly, 2021. Available at: https://www.mckinsey.com/business-functions/risk-and-resilience/our-insights/the-comingopportunity-in-consumer-lending (accessed 01.05.2021).
2. Hand D. J., Henley W. E. Statistical classification methods in consumer credit scoring: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1997, vol. 160, no. 3, pp. 523–541.
3. Baesens B., Van Gestel T., Viaene S., Stepanova S., Suykens J., Vanthienen J. Benchmarking state-of-theart classification algorithms for credit scoring. Journal of the Operational Research Society, 2003, vol. 54, no. 6, pp. 627–635.
4. Lessmann S., Baesens B., Seow H.-V., Thomas L. C. Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. European Journal of Operational Research, 2015, vol. 247, no. 1, pp. 124–136.
5. Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014, pp. 125, 126–127.
6. Geron A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd edition. O’Reilly Media, 2019, pp. 144–149.
7. Murphy K. P. Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning Series). The MIT Press, 2012, pp. 225–227, 387–407.
8. Harrington P. Machine Learning in Action, 1st edition. Manning Publication Co, 2012, pp. 86–91, 148, 269–279.
9. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters, 2006, vol. 27, no. 8, pp. 861–874.
10. Metz C. E. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 1978, vol. 8, no. 4, pp. 283–298.
11. Kelleher J. D., Namee B. M., D’Arcy A. Fundamentals of Machine Learning for Predictive Data Analytics, 1st edition. The MIT Press, 2015, pp. 142–143, 539.
12. Gerhard F., Harlalka A., Suvanam R. The coming opportunity in consumer lending. McKinsey Quarterly, 2021. Available at: https://www.mckinsey.com/business-functions/risk-and-resilience/our-insights/the-comingopportunity-in-consumer-lending (accessed 01.05.2021).
13. Hand D. J., Henley W. E. Statistical classification methods in consumer credit scoring: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1997, vol. 160, no. 3, pp. 523–541.
14. Baesens B., Van Gestel T., Viaene S., Stepanova S., Suykens J., Vanthienen J. Benchmarking state-of-theart classification algorithms for credit scoring. Journal of the Operational Research Society, 2003, vol. 54, no. 6, pp. 627–635.
15. Lessmann S., Baesens B., Seow H.-V., Thomas L. C. Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. European Journal of Operational Research, 2015, vol. 247, no. 1, pp. 124–136.
16. Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014, pp. 125, 126–127.
17. Geron A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd edition. O’Reilly Media, 2019, pp. 144–149.
18. Murphy K. P. Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning Series). The MIT Press, 2012, pp. 225–227, 387–407.
19. Harrington P. Machine Learning in Action, 1st edition. Manning Publication Co, 2012, pp. 86–91, 148, 269–279.
20. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters, 2006, vol. 27, no. 8, pp. 861–874.
21. Metz C. E. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 1978, vol. 8, no. 4, pp. 283–298.
22. Kelleher J. D., Namee B. M., D’Arcy A. Fundamentals of Machine Learning for Predictive Data Analytics, 1st edition. The MIT Press, 2015, pp. 142–143, 539.