1. Бегунков, В. И. Классификация займов c использованием логистической регрессии / В. И. Бегунков, М. Я. Ковалев // Информатика. – 2023. − Т. 20, № 1. – С. 55–74. https://doi.org/10.37661/1816-0301-2023-20-1-55-74
2. Бегунков, В. И. Классификация займа с использованием нейронной сети прямого распространения / В. И. Бегунков // Информатика. – 2024. − Т. 21, № 1. – С. 55–74. https://doi.org/10.37661/1816-0301-2024-21-1-83-104
3. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research / S. Lessmann, B. Baesens, H.-V. Seow, L. C. Thomas // European Journal of Operational Research. – 2015. – Vol. 247, № 1. – P. 124–136. https://doi.org/10.1016/j.ejor.2015.05.030
4. Shalev-Shwartz, S. Understanding Machine Learning: From Theory to Algorithms / S. Shalev-Shwartz, S. Ben- David. – Cambridge University Press, 2014. – 397 p. https://doi.org/10.1017/CBO9781107298019
5. Rumelhart, D. Learning representations by back-propagating errors / D. Rumelhart, G. Hinton, R. Williams // Nature. – 1986. – Vol. 323. – P. 533–536. https://doi.org/10.1038/323533a0
6. Geron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow / A. Geron. – 2nd ed. – O’Reilly Media, 2019. – 483 p.
7. Goodfellow, I. Deep Learning / I. Goodfellow, Y. Bengio, A. Courville. – MIT Press, 2016. – 800 p.
8. Glorot, X. Understanding the difficulty of training deep feedforward neural networks / X. Glorot, Y. Bengio // Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), 2010, Chia Laguna Resort, Sardinia, Italy. – 2010. – Vol. 9. – P. 249–256.
9. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification / K. He, X. Zhang, S. Ren, J. Sun // Proceedings of the IEEE International Conference on Computer Vision (ICCV). – 2015. – P. 1026–1034. https://doi.org/10.1109/iccv.2015.123
10. Efficient BackProp / Y. LeCun, L. Bottou, G. B. Orr, K.-R. Müller // Neural Networks: Tricks of the Trade. – Berlin; He idelberg: Springer, 1998. – P. 9–50. – (Lecture Notes in Computer Science; vol 1524). https://doi.org/10.1007/3-540-49430-8_2
11. Roberts, S. W. Control chart tests based on geometric moving averages / S. W. Roberts // Technometrics. – 1958. – Vol. 1, № 3. – P. 239–250. https://doi.org/10.1080/00401706.1959.10489860
12. Kingma, D. P. Adam: A Method for Stochastic Optimization / D. P. Kingma, J. Ba // Arxiv [Preprint]. – 2014. – URL: https://arxiv.org/abs/1412.6980; https://doi.org/10.48550/arXiv.1412.6980
13. Dropout: A simple way to prevent neural networks from overfitting / N. Srivastava, G. Hinton, A. Krizhevsky [et al.] // Journal of Machine Learning Research. – 2014. – Vol. 15, № 1. – P. 1929–1958.