1. Towards continuous control for mobile robot navigation: A reinforcement learning and slam based approach / K. A. A. Mustafa [et al.] // Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2019. – Vol. 42. – Р. 857–863. https://doi.org/10.5194/isprs-archives-XLII-2-W13-857-2019
2. Truong, X. T. Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model / X. T. Truong, T. D. Ngo // IEEE Transactions on Automation Science and Engineering. – 2017. – Vol. 14, no. 4. – P. 1743–1760. https://doi.org/10.1109/TASE.2017.2731371
3. Playing Atari with Deep Reinforcement Learning [Electronic resource] / V. Mhin [et al.]. – 2013. – Mode of access: https://doi.org/10.48550/arXiv.1312.5602. – Date of access: 20.06.2024.
4. Mastering the game of Go with deep neural networks and tree search / D. Silver [et al.] // Nature. – 2016. – Vol. 529, no. 7587. – Р. 484–489.
5. Learning dexterous in-hand manipulation / M. Andrychowicz [et al.] // The Intern. J. of Robotics Research. – 2020. – Vol. 39, no. 1. – Р. 3–20. https://doi.org/10.1177/0278364919887447
6. Emergence of Locomotion Behaviours in Rich Environments [Electronic resource] / N. Heess [et al.]. – 2017. – Mode of access: https://doi.org/10.48550/arXiv.1707.02286. – Date of access: 20.06.2024.
7. Autonomous vehicle perception: The technology of today and tomorrow / J. V. Brummelen [et al.] // Transportation Research Part C: Emerging Technologies. – 2018. – No. 86. – P. 384–406. https://doi.org/10.1016/j.trc.2018.02.012
8. Huang, W. Learning to drive via Apprenticeship Learning and Deep Reinforcement Learning [Electronic resource] / W. Huang, F. Braghin, Z. Wang. – 2020. – P. 1–7. – Mode of access: https://doi.org/10.48550/arXiv.2001.03864. – Date of access: 20.06.2024.
9. Robust AI driving strategy for autonomous vehicles / S. Nageshrao [et al.] // AI-enabled Technologies for Autonomous and Connected Vehicles. – Springer, 2022. – Р. 161–212.
10. Sensor and sensor fusion technology in autonomous vehicles: A review / D. J. Yeong [et al.] // Sensors. – 2021. – Vol. 21, iss. 6. – Р. 2140. https://doi.org/10.3390/s21062140
11. Kweon, J. Deep reinforcement learning for guidewire navigation in coronary artery phantom / J. Kweon, K. Kim, Ch. Lee // IEEE Access. – 2021. – Vol. 9. – P. 166409–166422. https://doi.org/10.1109/ACCESS.2021.3135277
12. An Algorithmic Perspective on Imitation Learning / T. Osa [et al.]. – Bo ton : Now publishers Inc., 2018. – 188 p.
13. Лонца, A. Алгоритмы обучения с подкреплением на Python / A. Лонца ; пер. с англ. А. А. Слинкина. – М. : ДМК Пресс, 2020. – 285 с.
14. Chella, А. Imitation learning and anchoring through conceptual spaces / А. Chella // Applied Artificial Intelligence. – 2007. – No. 21. – P. 343–359.
15. Kim, T. Automatic tuning of the motion control system of a mobile robot along a trajectory based on the reinforcement learning method / T. Kim, R. Prakapovich // Communications in Computer and Information Science. – Springer, Cham, 2022. – Vol. 1562. – P. 234–244. https://doi.org/10.1007/978-3-030-98883-8_17
16. Sutton, R. S. Reinforcement Learning: An Introduction / R. S. Sutton, A. G. Barto. – 2nd ed. – London, England : The MIT Press, 2014. – 352 р.
17. Watkin , C. Q-learning / C. Watkin , P. Dayan // Machine Learning. – 1992. – Vol. 8, i . 3–4. – Р. 279–292.
18. Duan, J. M. Prior knowledge ba ed Q-learning path planning algorithm / J. M. Duan, Q. L. Chen // Electronic Optic & Control. – 2019. – Vol. 26, i . 9. – Р. 29–33.
19. Sutton, R. S. Reinforcement Learning: An Introduction / R. S. Sutton, A. G. Barto. – 2nd ed. – London, England : The MIT Pre , 2014. – 338 р.
20. Rossi, F. Horizontal and vertical scaling of container-based applications using reinforcement learning / F. Rossi, M. Nardelli, V. Cardellini // 2019 IEEE 12th Intern. Conf. on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019. – Milan, 2019. – P. 329–338. https://doi.org/10.1109/CLOUD.2019.00061
21. PAC model-free reinforcement learning / A. L. Strehl [et al.] // ICML’06: Proc. of the 23th Intern. Conf. on Machine Learning, Pittsburgh, Pennsylvania, USA, 25–29 June 2006. – Pittsburgh, 2006. – P. 881–888. https://doi.org/10.1145/1143844.114395
22. Ravichandiran, S. Deep Reinforcement Learning with Python / S. Ravichandiran. – 2nd ed. – Packt Publishing, 2020. – 760 p.
23. Yu, Ch. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units / Ch. Yu, G. Ren // BMC Medical Informatics and Decision Making. – 2020. – No. 20 (S3). – P. 1–8. https://doi.org/10.1186/s12911-020-1120-5
24. Imitation learning: progress, taxonomies and challenges [Electronic resource] / B. Zheng [et al.] // IEEE Transactions on Neural Networks and Learning Systems. – 2022. – P. 1–22. – Mode of access: https://arxiv.org/abs/2106.12177. – Date of access: 20.06.2024.
25. Ким, Т. Ю. Форсированное управление движением мобильного робота / Т. Ю. Ким, Г. А. Прокопович, А. А. Лобатый // Информатика. – 2022. − Т. 19, № 3. – С. 86–100. https://doi.org/10.37661/1816-0301-2022-19-3-86-100