Lian F. Y., Ge H. Y., Ju X. J., Zhang Y. , Fu M. X. КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ТРАНСЖИРНЫХ КИСЛОТ В СОЕВОМ МАСЛЕ С ИСПОЛЬЗОВАНИЕМ СПЕКТРОВ ТЕРАГЕРЦОВОГО ДИАПАЗОНА. Журнал прикладной спектроскопии. 2019;86(5):837(1)-837(9).
1. R. Ascensión, S. Isabel, C.V. Carmen, J. Chem., 2014, No. 38, 1–8 (2015).
2. J. M. Cortés, R. Sanchez, A. Vazquez, J. Agric. Food Chem., 54, No. 19, 6963 (2006).
3. M. G. Qian, H. Zhang, K. Z. Jiang, Food Chem., 166, 23–28 (2015).
4. M. A. Hossain, S. M. Salehuddin, Arab. J. Chem., 5, No. 3, 391–396 (2012).
5. D. Caroline, T. Angélique, S. Louise, Food Anal. Methods, 8, No. 6, 1425–1435 (2015).
6. C. X. Yuan, Y. Y. Xie, Y. X. Ju, Food Anal. Methods, 10, No. 11, 1–7 (2017).
7. Y. Tehseen, D. W. Sun, J. H. Cheng, Trend. Food Sci. Technol., 62, 177–189 (2017).
8. A. Ahmet, O. A. Swesi, B. S. Alhatab, J. Mol. Struct., 1128, 590–605 (2017).
9. B. Muik, B. Lendl, Chem. Phys. Lipids, 134, No. 2, 173–182 (2005).
10. X. P. Fu, Y. B. Ying, Crit. Rev. Food Sci. Nutr., 56, No. 11, 1913–1924 (2016).
11. H. Azizian, J. K. G. Kramer, J. Am. Oil Chem. Soc., 89, No. 12, 2143–2154 (2012).
12. H. Zhan, J. Xi, L. Xiao, Food Control, 67, 114–118 (2016).
13. J. Li, IEEE Trans. Instrum. Meas., 59, No. 8, 2094–2098 (2010).
14. F. S. Vieira, C. Pasquini, Anal. Chem. 86, No. 8, 3780–3786 (2014).
15. B. Ferguson, X. C. Zhang, Physics, 1, No. 1, 26–33 (2002).
16. F. Zhao, S. M. Long, Y. Zhang, Acta Phys. Sin., 64, No. 2, 24202 (2015).
17. E. Hérault, F. Garet, J. L. Coutaz, IEEE Trans. Terahertz Sci. Technol.,6, No. 1, 12–19 (2016).
18. J. S. Melinger, N. Laman, D. Grischkowsky, Appl. Phys. Lett., 93, No. 1, 44 (2008).
19. M. Y. Liang, J. L. Shen, G. Q. Wang, J. Phys. D, 41, No. 13, 135306 (2008).
20. K. Q. Wang, D. W. Sun, H. B. Pu, Trends Food Sci. Technol., 67, 93–105 (2017).
21. F. Y. Lian, D. G. Xu, Y. Zhang, IEEE Trans. Terahertz Sci. Technol., 7, No. 4, 378–384 (2017).
22. H. Y. Ge, Y. J. Jiang, S. H. Xia, Food Chem., 209, 286–292 (2016).
23. Y. J. Jiang, H. Y. Ge, S. H. Xia, Sci. Rep., 6, 21299 (2016).
24. I. Pupeza, R. Wilk, M. Koch, Opt. Express, 15, No.7, 4335–4350 (2007).
25. X. L. Zhao, J. S. Li, Int. Photon. Optoelectron. Meet., 276, No. 1, 012234 (2011).
26. Y. Zhang, X. H. Peng, X.C. Zhang, Chem. Phys. Lett., 452, No. 1, 59–66 (2008).
27. O. O. Olaoluwa, B. Isa, S. M. Lembe, Sci. Horticult., 199, 229–236 (2016).
28. D. C. Gu, M. J. Zou, C. H. Xu, Food Chem., 229, 458–463 (2017).
29. H. Y. Ge, Y. Y. Jiang, S. H. Xia, Sensors, 15, No. 6, 12560–12572 (2015).
30. W. K. Jia, D. A. Zhao, C. L. Hu, Appl. Intellig., 43, No. 1, 176–191 (2015).
31. B. M. Nicolai, K. Beullens, J. Lammertyn, Postharvest Biol. Technol., 45, No. 2, 99–118 (2007).
32. M. Naftaly, R. E. Miles, Proc. IEEE, 95, No. 8, 1658–1665 (2007).
33. F. Zhang, O. Kambara, M. Hayashi, RSC Adv., 4, No. 1, 269–278 (2015).
34. A. I. McIntosh, B. Yang, R. S. Chem. Phys. Lett., 558, No. 2, 104–108 (2013).
35. W. Withayachumnankul, B. M. Fischer, D. Abbott, J. Opt. Soc. Am. B, 25, No. 6, 1059–1072 (2018).