Гипоксия поджелудочной железы в патогенезе фиброза при хроническом панкреатите
Патогенез хронического панкреатита (ХП) и болевого синдрома до конца не изучен. Цель исследования – оценить взаимосвязь фиброзных изменений паренхимы поджелудочной железы (ПЖ), ее гипоксии и панкреатической протоковой гипертензии в патогенезе ХП. В проспективном исследовании проведено морфологическое, иммунногистохимическое изучение препаратов ПЖ, интраоперационно изучены показатели тканевой оксиметрии и панкреатического протокового давления у 40 пациентов, оперированных по поводу ХП. Установлено, что по мере прогрессирования фиброзных изменений в ткани ПЖ пациентов с ХП отмечаются увеличение экспрессии TGF-β1 (р < 0,001), рост количества панкреатических звездчатых клеток (r = 0,32, р < 0,05), снижение содержания гликогена (маркера гипоксии). При интраоперационном прямом измерении наблюдаются высокие показатели внутрипротокового давления: 34,2 (26,6; 45,3) мм рт. ст., снижение оксигенация ткани ПЖ, которые коррелируют со степенью фиброза. Ткани ПЖ при ХП испытывают хроническую гипоксию, связанную с фиброзом и панкреатической протоковой гипертензией. В свою очередь, вторичная ишемия ПЖ может быть значимым фактором в прогрессировании фиброза и хронического болевого синдрома при ХП.
1. Worning, H. Incidence and prevalence of chronic pancreatitis / H. Worning // Chronic Pancreatitis / ed. : H. G. Beger [et al.]. – Berlin, 1990. – P. 8–14.
2. Mössner, J. Epidemiology of chronic pancreatitis / J. Mössner // Standards in Pancreatic Surgery / ed. : H. G. Beger, M. Büchler, P. Malfertheiner. – Berlin, 1993. – P. 263–271.
3. Apte, M. The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells / M. Apte, R. Pirola, J. Wilson // Antioxidants and Redox Signaling. – 2011. – Vol. 15, N 10. – P. 2711–2722. https://doi.org/10.1089/ars.2011.4079
4. Lankisch, P. G. Pancreatitis / P. G. Lankisch, P. A. Banks. – Berlin : Springer-Verlag, 1998. – 377 p.
5. Dreilin, D. A. The natural history of alcoholic pancreatitis: update 1985 / D. A. Dreiling, M. Koller // Mount Sinai J. Med. – 1985. – Vol. 52, N 5. – P. 340–342.
6. Chronic pancreatitis, relapsing pancreatitis, calcification of the pancreas / H. Sarles [et al.] // Gastroenterology / ed. H. L. Bockus. – 2nd ed. – Philadelphia, 1976. – P. 1040–1051.
7. Pancreatic stone protein II: implication in stone formation during the course of chronic calcifying pancreatitis / I. Multigner [et al.] // Gastroenterology. – 1985. – Vol. 89, N 2. – P. 387–391. https://doi.org/10.1016/0016-5085(85)90341-5
8. Sarles, H. Pathogenesis of chronic pancreatitis / H. Sarles, J. P. Bernard, L. Gullo // Gut. – 1990. – Vol. 31, N 6. – P. 629–632. http://dx.doi.org/10.1136/gut.31.6.629
9. Noronha, M. Alcohol and the pancreas. II. Pancreatic morphology of advanced alcoholic pancreatitis / M. Noronha, O. Bordalo, D. A. Dreiling // Am. J. Gastroenterol. – 1981. – Vol. 76, N 2. – P. 120–124.
10. Braganza, J. M. Pancreatic disease: a casualty of hepatic «detoxification»? / J. M. Braganza // Lancet. – 1983. – Vol. 29, N 8357. – P. 1000–1003. https://doi.org/10.1016/s0140-6736(83)90983-2
11. Klöppel, G. Pathology of acute and chronic pancreatitis / G. Klöppel, B. Maillet // Pancreas. – 1993. – Vol. 8, N 6. – P. 659–670. https://doi.org/10.1097/00006676-199311000-00001
12. Comfort, M. W. Chronic relapsing pancreatitis. A study of twenty-nine cases without associated disease of the biliary or gastro-intestinal tract / M. W. Comfort, E. E. Gambill, A. H. Baggenstoss // Gastroenterology. – 1946. – Vol. 6. – P. 239–285, 376–408.
13. Ammann, R. W. Course of alcoholic chronic pancreatitis: a prospective clinicomorphological long-term study / R. W. Ammann, P. U. Heitz, G. Klöppel // Gastroenterology. – 1996. – Vol. 111, N 1. – P. 224–231.
14. Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor, and phospholipase C gamma / M. Korc [et al.] // Gut. – 1994. – Vol. 35, N 10. – P. 1468–1473. https://doi.org/10.1136/gut.35.10.1468
15. Localizing of transforming growth factor β-1 and its latent binding protein in human chronic pancreatitis / J.-L. van Laethem [et al.] // Gastroenterology. – 1995. – Vol. 108, N 6. – P. 1873–1881. https://doi.org/10.1016/0016-5085(95)90152-3
16. Klöppel, G. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern / G. Klöppel, S. Detlefsen, B. Feyerabend // Virchows Archiv. – 2004. – Vol. 445, N 1. – P. 1–8. https://doi.org/10.1007/s00428-004-1021-5
17. Klöppel, G. The morphological basis for the evolution of acute pancreatitis into chronic pancreatitis / G. Klöppel, B. Maillet // Virchows Archiv. A, Pathological Anatomy and Histopathology. – 1992. – Vol. 420, N 1. – P. 1–4. https://doi.org/10.1007/BF01605976
18. Klöppel, G. Chronic pancreatitis of alcoholic and nonalcoholic origin / G. Klöppel // Seminars in Diagnostic Pathology. – 2004. – Vol. 21, N 4. – P. 227–236. https://doi.org/10.1053/j.semdp.2005.07.002
19. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver / S. L. Friedman // Physiol. Rev. – 2008. – Vol. 88, N 1. – P. 125–172. https://doi.org/10.1152/physrev.00013.2007
20. The pancreatic stellate cell: a star on the rise in pancreatic diseases / M. B. Omary [et al.] // J. Clin. Invest. – 2007. – Vol. 117, N 1. – P. 50–59. https://doi.org/10.1172/jci30082
21. Watari, N. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration / N. Watari, Y. Hotta, Y. Mabuchi // Okajimas Folia Anatomica Japonica. – 1982. – Vol. 58, N 4–6. – P. 837–857. https://doi.org/10.2535/ofaj1936.58.4-6_837
22. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture / M. V. Apte [et al.] // Gut. – 1998. – Vol. 43, N 1. – P. 128–133. https://doi.org/10.1136/gut.43.1.128
23. Identification, culture, and characterization of pancreatic stellate cells in rats and humans / M. G. Bachem [et al.] // Gastroenterology. – 1998. – Vol. 115, N 2. – P. 421–432. https://doi.org/10.1016/s0016-5085(98)70209-4
24. Pancreatic stellate cells contribute to regeneration early after acute necrotising pancreatitis in humans / A. Zimmermann [et al.] // Gut. – 2002. – Vol. 51, N 4. – P. 574–578. https://doi.org/10.1136/gut.51.4.574
25. Pancreas recovery following cerulein-induced pancreatitis is impaired in plasminogen-deficient mice // A. Lugea [et al.] // Gastroenterology. – 2006. – Vol. 131, N 3. – P. 885–899. https://doi.org/10.1053/j.gastro.2006.06.023
26. Jaster, R. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-transretinoic acid / R. Jaster, I. Hilgendorf, B. Fitzner // Biochem. Pharmacol. – 2003. – Vol. 66, N 4. – P. 633–641. https://doi.org/10.1016/ s0006-2952(03)00390-3
27. Talukdar, R. Pancreatic stellate cells: new target in the treatment of chronic pancreatitis / R. Talukdar, R. K. Tandon // J. Gastroenterol. Hepatol. – 2008. – Vol. 23, N 1. – P. 34–41. https://doi.org/10.1111/j.1440-1746.2007.05206.x
28. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells / M. G. Bachem [et al.] // Gastroenterology. – 2005. – Vol. 128, N 4. – P. 907–921. https://doi.org/10.1053/j.gastro.2004.12.036
29. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover / P. A. Phillips [et al.] // Gut. – 2003. – Vol. 52, N 2. – P. 275–282. https://doi.org/10.1136/gut.52.2.275
30. Pancreatic stellate cells: partners in crime with pancreatic cancer cells / A. Vonlaufen [et al.] // Cancer Res. – 2008. – Vol. 68, N 7. – P. 2085–2093. https://doi.org/10.1158/0008-5472.can-07-2477
31. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis / M. V. Apte [et al.] // Gut. – 1999. – Vol. 44, N 4. – P. 534–541. https://doi.org/10.1136/gut.44.4.534
32. Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis / T. Luttenberger [et al.] // Lab. Invest. – 2000. – Vol. 80, N 1. – P. 47–55. https://doi.org/10.1038/labinvest.3780007
33. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells / E. Schneider [et al.] // Am. J. Physiol.-Cell Physiol. – 2001. – Vol. 281, N 2. – P. C532–C543. https://doi.org/10.1152/ajpcell.2001.281.2.c532
34. Expression of transforming growth factor-β1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis / F. W.-T. Shek [et al.] // Am. J. Pathol. – 2002. – Vol. 160, N 5. – P. 1787–1798. https://doi.org/10.1016/s0002-9440(10)61125-x
35. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis / P. Mews [et al.] // Gut. – 2002. – Vol. 50, N 4. – P. 535–541. https://doi.org/10.1136/gut.50.4.535
36. Cell migration: a novel aspect of pancreatic stellate cell biology / P. A. Phillips [et al.] // Gut. – 2003. – Vol. 52, N 5. – P. 677–682. https://doi.org/10.1136/gut.52.5.677
37. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway / K. Hama [et al.] // Biochem. Biophys. Res. Commun. – 2006. – Vol. 340, N 3. – P. 742–750. https://doi.org/10.1016/j.bbrc.2005.12.069
38. Gao, R. Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin alpha5beta1 as a novel CCN2 receptor / R. Gao, D. R. Brigstock // Gastroenterology. – 2005. – Vol. 129, N 3. – P. 1019–1030. https://doi.org/10.1053/j.gastro.2005.06.067
39. Cyclooxygenase-2 is required for activated pancreatic stellate cells to respond to pro-inflammatory cytokines / H. Aoki [et al.] // Am. J. Physiol.-Cell Physiol. – 2007. – Vol. 292, N 1. – P. C259–C268. https://doi.org/10.1152/ajpcell.00030.2006
40. Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis / N. Ohnishi [et al.] // Gut. – 2003. – Vol. 52, N 10. – P. 1487–1493. https://doi.org/10.1136/gut.52.10.1487
41. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells / A. Masamune [et al.] // World J. Gastroenterol. – 2005. – Vol. 11, N 39. – P. 6144–6151. https://doi.org/10.3748/wjg.v11.i39.6144
42. Ammann, R. W. Course of alcoholic chronic pancreatitis: a prospective clinicomorphological long-term study /
43. R. W. Ammann, P. U. Heitz, G. Kloppel // Gastroenterology. – 1996. – Vol. 111, N 1. – P. 224–231. https://doi.org/10.1053/ gast.1996.v111.pm8698203
44. Fibrogenesis in alcoholic chronic pancreatitis: the role of tissue necrosis, macrophages, myofibroblasts and cytokines / S. Detlefsen [et al.] // Modern Pathol. – 2006. – Vol. 19, N 8. – P. 1019–1026. https://doi.org/10.1038/modpathol.3800613
45. Masamune, A. Pancreatic stellate cells – Multi-functional cells in the pancreas / A. Masamune, T. Shimosegawa // Pancreatology. – 2013. – Vol. 13, N 2. – P. 102–105. https://doi.org/10.1016/j.pan.2012.12.058
46. Shimizu, K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis / K. Shimizu // J. Gastroenterol. – 2008. – Vol. 43, N 11. – P. 823–832. https://doi.org/10.1007/s00535-008-2249-7