Куницкая Ю. Н., Кочеткова Т. А., Коваленко Е. А., Голубева Е. Н., Булай П. М., Молчанов П. Г., Денисов А. А., Питлик Т. Н., Черенкевич С. Н. ПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ И МЕМБРАННЫЙ ПОТЕНЦИАЛ КЛЕТОК ЛИНИЙ С6 И HELA ПРИ КУЛЬТИВИРОВАНИИ В УСЛОВИЯХ ЭЛЕКТРИЧЕСКОЙ СТИМУЛЯЦИИ. Известия Национальной академии наук Беларуси. Серия биологических наук. 2017;(2):7-13.
1. Funk, R. H. W. Endogenous electric fields as guiding cue for cell migration / R. H. W. Funk // Front Physiol. – 2015. – Vol. 6 (143). – P. 1–22.
2. Куницкая, Ю. Н. Равновесный трансмембранный потенциал опухолевых клеток линий C6, НЕр-2с и НЕК при пролиферации / Ю. Н. Куницкая, Е. Н. Голубева // Сб. работ 70-й науч. конф. студентов и аспирантов Белорус. гос. ун-та, 15–18 мая 2013 г., г. Минск: в 3 ч. / Белорус. гос. ун-т. – Минск, 2013. – Ч. 1. – С. 134–137.
3. Potassium channels in cell cycle and cell proliferation / D. Urrego [et al.] // Philosophical Transactions of the Royal Society B: Biological Sciences. – 2014. – Vol. 369. – P. 1–10.
4. Physiological conditioning by electric field stimulation promotes cardiomyogenic gene expression in human cardiomyocyte progenitor cells / A. Llucia-Valldeperas [et al.] // Stem Cell Res. & Therapy. – 2014. – Vol. 5, N 93. – P. 1–5.
5. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells / J. H. Lim [et al.] // Cell Reprogram. – 2013. – Vol. 15, N 5. – P. 405–412.
6. Effects of steep pulsed electric fields (spef) on mitochondrial transmembrane potential of human liver cancer cell / Y. Mi [et al.] // Conf. Proc. IEEE Eng. Med. Biol. Soc. – 2007. – P. 5815–5818.
7. Electrical stimulation enhances cell migration and integrative repair in the meniscus / X. Yuan [et al.] // Sci. Reports. – 2014. – Vol. 4, N 3674. – P. 1–12.
8. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors / M. Zhao [et al.] // J. Cell Sci. – 2004. – Vol. 117, N 3. – P. 397–405.
9. Titushkin, I. Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins / I. Titushkin, M. Cho // Biophys. J. – 2009. – Vol. 96, N 2. – P. 717–728.
10. Control of cell proliferation by cell volume alterations in rat C6 glioma cells / B. Rouzaire-Dubois [et al.] // Eur. J. Physiol. – 2000. – Vol. 440. – P. 881–888.
11. Sauve, R. Single Ca++ dependent K+ currents in hela cancer cells / R. Sauve, G. Bedfer, G. RoySingle // The Biophys. J. – 1983. – Vol. 45. – P. 66–68.
12. Wang, S. Identification of RBK1 potassium channels in C6 astrocytoma cells / S. Wang, N. A. Castl, G. K. Wang // Glia. – 1992. – Vol. 5, N 2. – P. 146–153.
13. Negulyaev, Y. A. Calcium-permeable channels in HeLa cells / Y. A. Negulyaev, G. A. Savokhina, E. A. Vedernikova // Gen. Physiol. Biophys. – 1993. – Vol. 12, N 1. – P. 19–25.
14. Manor, D. Modulation of small conductance calcium-activated potassium channels in C6 glioma cells / D. Manor, N. Moran // J. Membrane Biol. – 1994. – Vol. 140, N 1. – P. 69–79.
15. Cell volume regulation and swelling-activated chloride channels / A. Sardini [et al.] // Biochim. Biophys. Acta. – 2003. – Vol. 1618, N 2. – P. 153–162.
16. Transmembrane calcium influx induced by ac electric fields / M. R. Cho [et al.] // FASEB J. – 1999. – Vol. 13, N 6. – P. 677–683.
17. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase / P. Huang [et al.] // J. of Biol. Chem. – 2001. – Vol. 276, N 23. – P. 20093–20100.
18. Expression of voltage-gated chloride channels in human glioma cells / M. L. Olsen [et al.] // J. of Neurosci. – 2003. – Vol. 23, N 13. – P. 5572–5582.
19. Khatib, L. Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts / L. Khatib, D. E. Golan, M. Cho // FASEB J. – 2004. – Vol. 18, N 15. – P. 1903–1905.
20. Plonsey, R. Bioelectricity: a quantitative approach / R. Plonsey, R. C. Barr. – 3rd ed. – New York: Springer Science+ Business Media, LLC, 2007. – 528 p.