Скуратович Т. А., Молчан О. В., Ермола Е. М., Макаревич Д. А., Голубович В. П. Влияние фуллерен-аргинина на ростовые и биохимические параметры этиолированных проростков огурца (Cucumis sativus L.) при гипотермии. Защита растений. 2017;(41):307-315.
1. Organic chemistry of fullerenes. Fullerenes: chemistry, physics and technology / S.R. Wilson [et al.]. – New York, 2000. – Р. 91 – 177.
2. Husen, A. Carbon and fullerene nanomaterials in plant system / A. Husen, K. S. Siddiqi // J. nanobiotechnology. – 2014. – Vol. 12. – P. 16.
3. Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants / R. De La Torre-Roche [et al.] // Environ. Sci. Technol. – 2013. – Vol.47, № 4. – P.12539–12547.
4. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level / Q. Liu [et al.] // ACS Nano. – 2010. – Vol.4. – P. 5743–5748.
5. Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models / J. Gao [et al.]. – PLoS ONE. – 2011. – Vol. 6, № 5: e19976 [Electronic resource]: Mode of access : https://doi.org/10.1371/journal.pone.0019976.
6. Kole, C. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordicacharantia) / C. Kole [et al.] // BMC Biotechnol. – 2013. – Vol. 13. – P. 37.
7. Inhibition of tumor growth by endohedralmetallofullerenol nanoparticles optimized as reactive oxygen species scavenger / J.J. Yin [et al.] // Mol .pharmacol. – 2008. – Vol.74, № 4. – P. 1132 –1140.
8. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development / F.J. Corpas [et al.] // Planta. – 2006. – Vol. 224. – P. 246–254.
9. Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria / H. Yamasaki [et al.] // Nitric Oxide. – 2010. – Vol. 5. – P. 261– 270.
10. Folin, O. On tyrosine and tryptophane determinations in proteins / O.Folin, V.Ciocalteu // J. Biol. Chem. – 1927. – Vol. 73, № 2. – P. 627 – 650.
11. Taylor, A.O. Plantsunderclimaticstress. II. low temperature, high light effects on chloroplast ultrastructure / A.O. Taylor, A.S. Craig // Plant Physiology. –1971. – Vol. 47. – P. 719–725.
12. Nessler, C.L. Physiological observations of extranuclear temperature-sensitive lethality in Nicotianatabacum L. tobacco genotypes / C.L.Nessler, R.C.Long, E.A.Wernsman // Zeitschrift furpflanzen Physiologie. – 1980. – Vol. 99. – P. 27–35.
13. Ontogenetic changes of chloroplast ultrastructure, photosynthates, and photosynthate outflow from the leaves in cucumber plants under conditions of reduced night temperature / I.Karpilova [et al.] // Soviet Plant Physiology.– 1980. – Vol. 29. – P. 113–120.
14. Запрометов, М.Н. Фенилаланин-аммоний лиаза и образование фенольных соединений в проростках кукурузы / М.Н. Запрометов, С.В. Шипилова // Физиология растений. – 1972. – Т. 19, вып. 3. – С. 498–503.