Витязь П. , Федосюк В. , Макоед И. , Шерматов Ж. , Пайзуллаханов М.-С. , Живулько А. , Янушкевич К. Диэлектрические свойства катион-замещенного редкоземельными элементами феррита висмута. Наука и инновации. 2023;(7):47-53.
1. W. Eerenstein, N. Mathur, J. F. Scott. Multiferroic and magnetoelectric material // Nature. 2006. Vol. 442 (17). P. 759–765.
2. G. Catalan, J. F. Scott. Physics and Applications of Bismuth Ferrite // Advanced Materials. 2009. Vol. 21. P. 2463–2485.
3. D. C. Arnold. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2015. Vol. 62. P. 62–82.
4. И. И. Макоед, А. Ф. Ревинский. Особенности эволюции магнитных свой ств феррита висмута, модифицированного катионами редкоземельных элементов // Физика твердого тела. 2015. Т. 57, вып. 9. С. 1742–1747.
5. Karthik T., Rao T. D., Srinivas A., Asthana S. A-Site Cation disorder and Size variance effects on the physical properties of multiferroic Bi0. 9RE0. 1FeO3 Ceramics (RE = Gd3+, Tb3+, Dy3+) // arXiv preprint. 2012. arXiv:1206.5606. Р. 1–12.
6. I. I. Makoed [et al.]. Predicted model of magnetocaloric effect in BiFeO3-based multiferroics // Solid State Sciences. 2019. Vol. 95.
7. I. I. Makoed, A. A. Amirov, N. A. Liedienov, A. V. Pashchenko, K. I. Yanushkevich, D. V. Yakimchuk, E. Yu. Kaniukov. Evolution of structure and magnetic properties in EuxBi1_xFeO3 // Journal of Magnetism and Magnetic Materials. 2019. Vol. 489. P. 165–379.
8. V. Petříček, M. Dušek, L. Palatinus. Crystallographic Computing System JANA2006: General features // Zeitschrift für Kristallographie. 2014. Vol. 229(5). P. 345–352.
9. D. D. Tatarchuk, V. I. Molchanov, V. M. Pashkov, A. S. Franchuk. Microwave dielectric measurement methods on the base of the composite dielectric resonator // 2015 IEEE 35th Intern. Conferen. Electron. Nanotechn. ELNANO. Kyiv, Ukraine. 2015. P. 231–234.
10. K. Majhi, B. S. Prakash, K.B.R. Varma. Extreme values of relative permittivity and dielectric relaxation in Sr2SbMnO6 ceramics // Journal of Physics D. Applied Physics. 2007/ Vol. 40. P. 7128–7135.
11. K. S. Cole, R. H. Cole. Dispersion and absorption in dielectrics I. Alternating current characteristics / // Journal of Chemical Physics. 1941. Vol. 9. P. 341–351.
12. D. W. Davidson, R. H. Cole. Dielectric relaxation in glycerol, propylene glycol, and nPropanol / // Journal of Chemical Physics. 1951. Vol. 19. P. 1484–1490.
13. R. Andoulsi-Fezei, N. Sdiri, K. Horchani-Naifer, M. Ferid. Effect of temperature on the electrical properties of lanthanum ferrite, Spectrochimica Acta, Part A // Molecular and Biomolecular Spectroscopy. 2018. Vol. 205. P. 214–220.
14. W. Wang [et al]. Magnetic domain-wall induced ferroelectric polarization in rareearth orthoferrites AFeO3 (A = Lu, Y, Gd): first-principles calculations // Journal of Materials Chemistry. 2019. Vol. 7. P. 10059–10065.
15. V. V. Triguk, I. I. Makoed, A. F. Ravinski. Electronic structure and improper electric polarization of samarium orthoferrite // Physics of the Solid State. 2016. Vol. 58. P. 2443–2448.
16. X. Zhao, X. Wang, H. Lin, Z. Wang. Electronic polarizability and optical basicity of lanthanide oxides // Physica B. 2007. Vol. 392. P. 132–136.
17. M. I. Danilkevitch, I. I. Makoed. Dielectric Properties of Spinel, Garnet and Pe-rovskite Oxides // Physica Status Solidi (B). 2000. Vol. 222. P. 541–551.