1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries / H.Sung[etal.] // CA: acancer journal for clinicians. 2021. Vol. 71. №3. P.209–249.
2. Медведева И.В. Статистический ежегодник Республики Беларусь / редкол.: И.В. Медведева (отв. ред.) [и др.] // Национальный статистический комитет РБ.– Минск, 2020.
3. S. C. Baetke. Applications of nanoparticles for diagnosis and therapy of cancer / S.C. Baetke, T. Lammers, F. Kiessling// Br.J. Radiol. 2015. Vol. 88. №1054. Р. 20150207.
4. Radio-photothermal therapy mediated by asingle compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model / M.Zhou[etal.] // Nanoscale. 2015. Vol. 7. №46. P.19438–19447.
5. Application of nanotechnology to cancer radiotherapy/ Y. Mi [etal.] // Cancer Nanotechnol. 2016. Vol. 7. №1. Р. 11
6. Improving Cancer Chemoradiotherapy Treatment by Dual Controlled Release of Wortmannin and Docetaxel in Polymeric Nanoparticles / K.M. Au[etal.] // ACS Nano. 2015. Vol. 9. №9. P.8976–8996.
7. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts / D. Rehana[etal.] // Biomed. Pharmacother. 2017. Vol. 89. P.1067–1077.
8. Kummara S.Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles – A comparative study/ S. Kummara, M.B.Patil, T. Uriah // Biomed. Pharmacother. 2016. Vol. 84. P.10–21.
9. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles / J. Venkatesan [etal.] // Int. J. Biol. Macromol. 2017. Vol. 98. P.515–525.
10. The influence of maltotriose-modified poly(propylene imine) dendrimers on the chronic lymphocytic leukemia cells in vitro: Dense shell G4 PPI / I.Franiak-Pietryga[etal.] // Mol. Pharm. 2013. Vol. 10. №6. P.2490–2501.
11. Gorzkiewicz M. Dendrimers as nanocarriers for nucleoside analogues / M. Gorzkiewicz, B. Klajnert-Maculewicz // Eur. J.Pharm. Biopharm. 2017. Vol. 114. P.43–56.
12. Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications / R. Ranganathan [etal.] // Int J Nanomedicine. 2012. Vol. 7. P.1043–1060. 13. Nanodrug delivery in reversing multidrug resistance in cancer cells / S. Kapse-Mistry[etal.] // Front. Pharmacol. 2014. Vol. 5. Р. 159
13. Carbon Nanotubes in Cancer Therapy and Drug Delivery / A. Elhissi [et al.] // Emerging Nanotechnologies in Dentistry. 2012. P.347–363.
14. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells / R.Li [etal.] // Carbon. 2011. Vol. 49. №5. P.1797–1805.
15. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells / N. W.S. Kam [etal.] // J. Am.Chem. Soc. 2004. Vol. 126. №22. P.6850–6851.
16. Gene delivery nanoparticles to modulate angiogenesis / J. Kim [et al.] // Adv. Drug Deliv. Rev. 2017. Vol.119. P.20–43.
17. K. Wang. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies/ K.Wang, F.M. Kievit, M.Zhang// Pharmacol. Res. 2016. Vol. 114. P.56–66.
18. Ovarian cancer treatment with atumor-targeting and gene expression-controllable lipoplex/ Z.Y. He[etal.] // Sci. Rep. 2016. Vol. 6. Р. 23764.
19. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors / B.Schultheis [etal.] // J.Clin. Oncol. 2014. Vol. 32. №36. P.4141–4148.