Бактериальный рак плодовых растений (Pseudomonas syringae pv. syringae)
Обзорная статья содержит информацию о распространении и основных симптомах бактериального рака – одного из наиболее опасных заболеваний плодовых растений, которое вызывают фитопатогенные бактерии Pseudomonas syringae pv. syringae. Приведены данные о цикле развития, факторах вирулентности и способах идентификации патогена, а также информация о мерах контроля заболевания, в том числе с использованием средств химической и биологической защиты растений. Собраны основные сведения об устойчивости сортов и гибридов к бактериальному раку в естественной среде и условиях in vitro.
1. Bultreys, A. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2 / A. Bultreys, M. Kaluzna // J. of Plant Pathology. – 2010. – Vol. 92 (1). – P. 1.21–1.33.
2. Disease and frost damage of woody plants caused by Pseudomonas syringae: seeing the forest for the trees / J. R. Lamichhane [et al.] // Advances in Agronomy. – 2014. – Vol. 126. – P. 235–295.
3. Jones, A. L. Bacterial canker of sweet cherry in Michigan / A. L. Jones // Plant Disease Rep. – 1971. – Vol. 55. – Р. 961–965.
4. Roos, I. M. M. Bacterial canker of sweet cherry in South Africa / I. M. M. Roos, M. J. Hattingh // Phytophylactica. – 1986. – Vol. 18. – P. 1–4.
5. Canfield, M. L. Isolation of Pseudomonas syringae from 40 cultivars od diseased woody plants with tip dieback in Pacific Northwest nurseries / M. L. Canfield, S. Baca, L. W. Moore // Plant Disease. – 1986. – Vol. 70. – P. 647–650.
6. Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits : COST 873 Stone Fruit Nut Health STF Meeting, Skierniewice, Poland, 27–28 March 2008 / Res. inst. of pomology a. floriculture ; ed.: J. Pulawska, A. Bultreys, P. Sobiczewski. – Skierniewice, 2008. – 15 p.
7. Assessment of sweet cherry (Prunus avium L.) genotypes for response to bacterial canker disease / J. Mgbechi-Ezeri [et al.] // Euphytica. – 2017. – Vol. 213. – Art. 145. https://doi.org/10.1007/s10681-017-1930-4
8. Susceptibility of cherries to bacterial canker (Pseudomonas syringae pv. syringae) in field and laboratory / S. Farhadfar [et al.] // Intern. J. of Agriculture a. Forestry. – 2016. – Vol. 6. – P. 20–27.
9. Evaluation of cherry cultivar susceptibility to bacterial canker and leaf spot disease / R. Iličić [et al.] // J. of Phytopathology. – 2018. – Vol. 166, iss. 11–12. – P. 799–808.
10. Thomidis, T. Susceptibility of 30 cherry (Prunus avium) genotypes to the bacterium Pseudomonas syringae pv. syringae / T. Thomidis, E. Exadaktylou // New Zealand J. of Crop a. Horticultural Sci. – 2008. – Vol. 36 (3). – P. 215–220.
11. Roche, M. An in vitro bioassay to evaluate sweet cherry response to inoculation with Pseudomonas syringae pv. syringae / M. Roche, A. N. Azarenko // Acta Horticulturae. – 2005. – Vol. 667. – P. 503–508.
12. Yessad, S. A detached leaf assay to evaluate virulence and pathogenicity of strains of Pseudomonas syringae pv. syringae on pear / S. Yessad, C. Manceau, J. Luisetti // Plant disease. – 1991. – Vol. 76. – P. 370–373.
13. Kaluzna, M. Virulence of Pseudomonas syringae pathovars and races originating from stone fruit trees / M. Kaluzna, P. Sobiczewski // Phytopathologia. – 2009. – Vol. 54. – P. 71–79.
14. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England / J. G. Vicente [et al.] // Europ. J. of Plant Pathology. – 2004. – Vol. 110. – P. 337–351.
15. Whitesides, S. K. Susceptibility of pear cultivars to blossom blast caused by Pseudomonas syringae / S. K. Whitesides, R. A. Spotts // HortSci. – 1991. – Vol. 26. – P. 880–882.
16. Bacterial canker of sweet cherry in Oregon – infection of horticultural and natural wounds, and resistance of cultivar and rootstock combinations / R. A. Spotts [et al.] // Plant Disease. – 2010. – Vol. 94 (3). – P. 345–350.
17. Григорцевич, Л. Н. Биологические приемы защиты семечковых культур от болезней / Л. Н. Григорцевич // Защита растений. – 1998. – Вып. XXII. – С. 40–45.
18. Коновалова, Н. А. Устойчивость к бактериальному раку (Pseudomonas syringae van Hall) гибридного потомства различных видов груши / Н. А. Коновалова, М. Г. Мялик // Плодоводство : сб. науч. тр. / Белорус. науч.-исслед. ин-т плодоводства ; редкол.: В. А. Самусь (гл. ред.) [и др.]. – Минск, 1994. – Т. 9, ч. 1. – С. 22–29.
19. Копиця, В. Н. Раковые заболевания скелетных частей яблони в Беларуси / В. Н. Копиця // Изв. Акад. аграр. наук Респ. Беларусь. – 1997. – № 4. – С. 58–62.
20. Roche, M. M. Development of an in vitro and modification of an in vivo bioassay to screen cherry genotypes for response to inoculation with Pseudomonas syringae pv. syringae : thesis … master of sci. in horticulture / M. M. Roche. – Oregon State Univ., 2001. – 63 p.
21. Garret, C. M. E. Influence of rootstock on the susceptibility of sweet cherry scions to bacterial canker, caused by Pseudomonas syringae pvs morsprunorum and syringae / C. M. E. Garret // Plant Pathology. – 1986. – Vol. 35 (1). – P. 114–119.
22. Григорцевич, Л. Н. Распространение и вредоносность бактериального рака плодовых культур в условиях Белоруссии / Л. Н. Григорцевич // Плодоводство : межведомств. темат. сб. / Белорус. науч.-исслед. ин-т картофелеводства и плодоовощеводства ; редкол.: Н. А. Дорожкин (гл. ред.) [и др.]. – Минск, 1974. – Вып. 2. – С. 121–124.
23. Коновалова, Н. А. Оценка коллекции сортов груши на устойчивость к заболеваниям / Н. А. Коновалова, М. Г. Мялик // Плодоводство : межведомств. темат. сб. / Белорус. науч.-исслед. ин-т картофелеводства и плодоовощеводства ; редкол.: А. В. Кругляков (гл. ред.) [и др.]. – Минск, 1983. – Вып. 5. – С. 73–78.
24. Sulikowska, M. Pseudomonas spp. isolated from stone fruit trees in Poland / M. Sulikowska, P. Sobiczewski // Zemdirbyste-Agriculture. – 2008. – Vol. 95, № 3. – P. 166–170.
25. Hirano, S. S. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte / S. S. Hirano, C. D. Upper // Microbiology a. molecular biology rev. – 2000. – Vol. 64, № 3. – P. 624–653.
26. Pseudomonas syringae: an overview and its future as a ‘rain making bacteria’ / P. Manohar [et al.] // Intern. Res. J. of Biological Sci. – 2015. – Vol. 4 (2). – P. 70–77.
27. Cameron, H. R. Disease of deciduous fruit trees incited by Pseudomonas syringae van Hall : techn. bull. / H. R. Cameron. – Corvallis : Oregon State Univ., Agricultural Experiment Station, 1962. – Vol. 66. – 64 p.
28. Crosse, J. E. Epidemiological relations of the Pseudomonad pathogens of deciduous fruit trees / J. E. Crosse // Annu. Rev. of Phytopathology. – 1966. – Vol. 4. – P. 291–310.
29. Konavko, D. Pseudomonas syringae as important pathogen of fruit trees with emphasis on plum and cherry / D. Konavko, I. Moročko-Bičevska, B. Bankina // Research for rural development : annu. 20th intern. sci. conf. proc., Jelgava, 23–25 May 2014 / Latvia Univ. of Agriculture ; ed. Z. Gaile [et al.]. – Jelgava, 2014. – Vol. 1. – P. 19–25.
30. Specifics of pesticides effects on the phytopathogenic bacteria / V. Patyka [et al.] // Ecological Chemistry a. Engineering S. – 2016. – Vol. 23. – P. 311–331.
31. Григорцевич, Л. Н. Грибные и бактериальные микроорганизмы – возбудители раковых болезней плодовых культур / Л. Н. Григорцевич // Тр. БГТУ. № 1. Лесное хоз-во. – 2011. – № 19. – С. 202–204.
32. Григорцевич, Л. Н. Обоснование и разработка биологических приемов защиты сада от болезней / Л. Н. Григорцевич // Актуальные вопросы теории и практики защиты плодовых и ягодных культур от вредных организмов в условиях многоукладности сельского хозяйства : тез. докл. Всерос. совещ., Загорье, 3–6 марта 1998 г. / Всерос. селекц.-технол. ин-т садоводства и питомниководства. – М., 1998. – С. 188–190.
33. Etiology of bacterial canker on young sweet cherry trees in Serbia / J. Balaž [et al.] // J. of Plant Pathology. – 2016. – Vol. 98. – P. 285–294.
34. Janse, J. D. Occurrence of Pseudomonas syringae pathovars in stone fruits in the Netherlands and availability of strains from different hosts of this pathogen / J. D. Janse, A. van Beuningen, M. Wenneker // Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits : COST 873 Stone Fruit Nut Health STF Meeting, Skierniewice, Poland, 27–28 March 2008 / Res. inst. of pomology a. floriculture ; ed.: J. Pulawska, A. Bultreys, P. Sobiczewski. – Skierniewice, 2008. – P. 7.
35. Григорцевич, Л. Н. Защитные мероприятия против раковых болезней в саду / Л. Н. Григорцевич // Земляробства i ахова раслiн. – 2008. – № 6. – С. 50–51.
36. CABI : Invasive species compendium [Electronic resource] . – Mode of access: https://www.cabi.org. – Date of access: 08.09.2022.
37. Öksel, C. Identification of causal agent(s) of cherry bacterial canker in Marmara region of Turkey / C. Öksel, M. Mirik // Current Trends in Natural Sci. – 2021. – Vol. 10, iss. 19. – P. 368–374.
38. Phenotypic and genetic characterization of Pseudomonas syringae strains associated with the recent citrus bacterial blast and bacterial black pit epidemics in Tunisia / Е. Abdellatif [et al.] // Plant Pathology. – 2016. – Vol. 66, iss. 7. – P. 1081– 1093.
39. First report of citrus bacterial blast and citrus black pit caused by Pseudomonas syringe pv. syringae in Tunisia / Е. Abdellatif [et al.] // New Disease Rep. – 2015. – Vol. 32, iss. 1. – P. 35.
40. Scortichini, M. Severe outbreak of Pseudomonas syringae pv. syringae on new apricot cultivars in Central Italy / M. Scortichini // J. of Plant Pathology. – 2006. – Vol. 88. – P. 65–70.
41. Kotan, R. First record of bacterial canker caused by Pseudomonas syringae pv. syringae, on apricot trees in Turkey / R. Kotan, F. Sahin // Plant Pathology. – 2002. – Vol. 51. – P. 798.
42. Gutiérrez-Barranquero, J. A. Pseudomonas syringae pv. syringae associated with mango trees, a particular pathogen within the ‘Hodgepodge’ of the Pseudomonas syringae сomplex / J. A. Gutiérrez-Barranquero, F. M. Cazorla, A. de Vicente // Frontiers in Plant Sci. – 2019. – Vol. 10. – Art. 570. https://doi.org/10.3389/fpls.2019.00570
43. Using multilocus sequence analysis to distinguish pathogenic from saprotrophic strains of Pseudomonas from stone fruit and kiwifruit / S. B. Visnovsky [et al.] // Europ. J. of Plant Pathology. – 2019. – Vol. 155. – P. 643–658.
44. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis / M. Gomila [et al.] // Frontiers in Microbiology. – 2017. – Vol. 8. – Art. 2422. https://doi.org/10.3389/fmicb.2017.02422
45. Young, J. M. Taxonomy of Pseudomonas syringae / J. M. Young // J. of Plant Pathology. – 2010. – Vol. 92 (1). – P. 1.5–1.14.
46. Bacteria from four phylogroups of the Pseudomonas syringae complex can cause bacterial canker of apricot / L. Parisi [et al.] // Plant Pathology. – 2019. – Vol. 68, iss. 7. – P. 1249–1258.
47. Genetic characterization and prevalence of Pseudomonas syringae strains from sweet cherry orchards in New Zealand / V. Marroni [et al.] // Plant Pathology. – 2023. – Vol. 72 (9). – P. 1673–1686.
48. EPPO A1 and A2 lists of pests recommended for regulation as quarantine pests : EPPO Standards [Electronic resource]. – Mode of access: https://www.eppo.int/media/uploaded_images/ACTIVITIES/plant_quarantine/pm1-002-28-en.pdf. – Date of access: 23.08.2023.
49. Pseudomonas syringae pv. actinidiae, P. syringae and P. viridiflava on kiwifruit : PP 1/282 (2). – EPPO Bull. – Vol. 49. – 2018. – P. 25–27.
50. Characterisation of the pathogenicity of strains of Pseudomonas syringae towards cherry and plum / M. T. Hulin [et al.] // Plant Pathology. – 2018. – Vol. 67, № 5. – P. 1177–1193.
51. Agrios, G. N. Plant Pathology / G. N. Agrios. – 5th ed. – Burlington : Elsevier Acad. Press, 2005. – 919 p.
52. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control / M. M. Kennelly [et al.] // Plant Disease. – 2007. – Vol. 91, № 1. – P. 4–17.
53. Scortichini, M. Bacterial canker and decline of European hazelnut / M. Scortichini // Plant Disease. – 2002. – Vol. 86, № 7. – P. 704–709.
54. Nasab, M. O. First report of Pseudomonas syringae pv. syringae causing leaf scorch on Satureja khuzestanica in Iran / M. O. Nasab, G. Khodakaramian, M. Aeini // J. of Plant Pathology. – 2022. – Vol. 104. – P. 847–848.
55. Pseudomonas syringae pv. syringae as the new causal agent of cabbage leaf blight / E. Basavand [et al.] / J. of Phytopathology. – 2021. – Vol. 169, iss. 4. – P. 253–259.
56. Kałużna, M. Characterization and phylogeny of the novel taxon of Pseudomonas spp., closely related to Pseudomonas avellanae as causal agent of a bacterial leaf blight of cornelian cherry (Cornus mas L.) and Pseudomonas syringae pv. syringae as a new bacterial pathogen of red dogwood (Cornus sanguinea L.) / M. Kałużna // J. of Plant Pathology. – 2018. – Vol. 101 (7). https://doi.org/10.1007/s42161-018-0189-5
57. Characterization and genetic diversity of Pseudomonas syringae pv. syringae isolates associated with rice bacterial leaf spot in Heilongjiang, China / L. Peng [et al.] // Biology. – 2022. – Vol. 11 (5). – Art. 720. https://doi.org/10.3390/biology11050720
58. First report of shot-hole on flowering cherry caused by Burkholderia contaminans and Pseudomonas syringae pv. syringae / V.-C. Han [et al.] // Plant Disease. – 2021. – Vol. 105 (12). – P. 3795–3802.
59. First report of the bacterial leaf spot caused by Pseudomonas syringae on grapevine (Vitis vinifera) in Russia / E. V. Porotikova [et al.] // Plant disease. – 2016. – Vol. 101 (2). – P. 380.
60. Григорцевич, Л. Н. Защита плодовых деревьев от болезней в садах интенсивного типа : метод. указания для изучения дисциплины «Основы плодоводства и огородничества» для студентов специальности 1-75 02 01 «Садовопарковое строительство» / Л. Н. Григорцевич. – Минск : Изд. БГТУ, 2010. – 40 c.
61. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome : major groups and growth abilities at low temperatures / P. Amato [et al.] // FEMS Microbiology Ecology. – 2007. – Vol. 59 (2). – P. 242–254.
62. Behrendt, U. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. / U. Behrendt, A. Ulrich, P. Schumann // Intern. J. of Systematic a. Evolutionary Microbiology. – 2003. – Vol. 53 (5). – P. 1461–1469.
63. Information on peach bacterial canker in Aegean region of Turkey / H. Ozaktan [et al.] // Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits : COST 873 Stone Fruit Nut Health STF Meeting, Skierniewice, Poland, 27–28 March 2008 / Res. inst. of pomology a. floriculture ; ed.: J. Pulawska, A. Bultreys, P. Sobiczewski. – Skierniewice, 2008. – P. 8.
64. Existence of Pseudomonas syringae pv. syringae in mango grooves of southern Punjab Pakistan reveals an emerging threat of apical necrosis due to climate change / A. Abdullah [et al.] // Fresenius Environmental Bull. – 2021. – Vol. 30, № 06A. – P. 6679–6690.
65. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis / A. Ravindran [et al.] // MicrobiologyOpen. – 2015. – Vol. 4, № 4. – P. 553–573.
66. Akbaba, M. Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey / M. Akbaba, H. Ozaktan // Egyp. J. of Biological Pest Control. – 2021. – Vol. 31. https://doi.org/10.1186/s41938-021-00385-7
67. Pseudomonas syringae causing bacterial canker on apple trees in Brazil / L. Araujo [et al.] // Plant protection. – 2020. – Vol. 79, № 4. – P. 592–598.
68. Field evaluation of treatments for the control of the bacterial apical necrosis of mango (Mangifera indica) caused by Pseudomonas syringae pv. syringae / F. M. Cazorla [et al.] // Europ. J. of Plant Pathology. – 2006. – Vol. 116 (4). – P. 279–288.
69. Григорцевич, Л. Н. Основы плодоводства : учеб. пособие / Л. Н. Григорцевич, Ю. М. Полещук, А. И. Блинцов. – Минск : БГТУ, 2004. – 90 с.
70. Kannan, V. R. Plant pathogenic bacteria : an overview / V. R. Kannan, K. K. Bastas, R. A. Arokiaswamy // Sustainable approaches to controlling plant pathogenic bacteria / ed. V. R. Kannan, K. K. Bastas. – Boca Raton, 2016. – Ch. 1. – P. 1–16.
71. Kunkel, B. N. Virulence strategies of plant pathogenic bacteria / B. N. Kunkel, Zh. Chen // The Procaryotes / ed.: M. Dworkin (ed.-in-chief) [et al.]. – New York, 2006. – Vol. 2. Ecophysiology and Biochemistry. – Ch. 1.14. – P. 421–440.
72. Phytotoxic properties of Pseudomonas syringae pv. syringae toxins / N. S. Iacobellis [et al.] // Physiological and Molecular Plant Pathology. – 1992. – Vol. 40, iss. 2. – P. 107–116.
73. Antimicrobial lipodepsipeptides from Pseudomonas spp: a comparison of their activity on model membranes / G. Menestrina [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 185–198.
74. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis / B. K. Scholz-Schroeder [et al.] // Molecular Plant-Microbe Interactions. – 2001. – Vol. 14, № 3. – P. 336–348.
75. Fungicidal activities and mechanisms of action of Pseudomonas syringae pv. syringae lipodepsipeptide syringopeptins 22A and 25A / M. F. Bensaci [et al.] // Frontiers in Microbiology. – 2011. – Vol. 2. – Art. 216. https://doi.org/10.3389/fmicb.2011.00216
76. Hutchison, M. L. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant pathogen interaction / M. L. Hutchison, M. A. Tester, D. C. Gross // Molecular Plant-Microbe Interactions. – 1995. – Vol. 8, № 4. – P. 610–620.
77. Buongiorno, D. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers / D. Buongiorno, G. D. Straganz // Coordination Chemistry Rev. – 2013. – Vol. 257, № 2. – P. 541–563.
78. Isolation and characterization of Pseudomonas syringae isolates afecting stone fruits and almond in Montenegro / T. Popović [et al.] // J. of Plant Diseases a. Protection. – 2021. – Vol. 128 (17). – P. 391–405.
79. An antimetabolite toxin (mangotoxin) is produced by Pseudomonas syringae pv. syringae isolated from mango / F. M. Cazorla [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 175–184.
80. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity / L. Harrison [et al.] // J. of Gen. Microbiology. – 1991. – Vol. 137 (12). – P. 2857–2865.
81. Bender, C. L. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases / C. L. Bender, F. Alarcón-Chaidez, D. C. Gross // Microbiology a. molecular biology rev. – 1999. – Vol. 63, № 2. – P. 266–292.
82. Bultreys, A. Biological and molecular detection of toxic lipodepsipeptide producing Pseudomonas syringae strains and PCR identification in plants / A. Bultreys, I. Gheysen // Appl. a. Environmental Microbiology. – 1999. – Vol. 65, № 5. – P. 1904–1909.
83. Interaction between nitrogen-fertilized peach trees and expression of syrB, a gene involved in syringomycin production in Pseudomonas syringae pv. syringae / T. Cao [et al.] // Phytopathology. – 2005. – Vol. 95, № 5. – P. 581–586.
84. Бандурко, И. А. Сортоизучение и селекция груши : учеб. пособие для аспирантов с.-х. направления / И. А. Бандурко. – Майкоп : МГТУ, 2016. – 132 с.
85. Mo, Y.-Y. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae / Y.-Y. Mo, D. C. Gross // J. of Bacteriology. – 1991. – Vol. 173, № 18. – P. 5784– 5792.
86. Cherry picking by pseudomonads: After a sentury of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits / M. T. Hulin [et al.] // Plant Pathology. – 2020. – Vol. 69 (6). – P. 962–978.
87. Quigley, N. B. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules / N. B. Quigley, D. C. Gross // Molecular Plant-Microbe Interactions. – 1994. – Vol. 7, № 1. – P. 78–90.
88. Screening wild cherry (Prunus avium) for resistance to bacterial canker by laboratory and field tests / F. Santi [et al.] // Forest Pathology. – 2004. – Vol. 34, № 6. – P. 349–362.
89. Sayler, R. J. The effect of copper sprays and fertilization on bacterial canker in French prune / R. J. Sayler, B. C. Kirkpatrick // Canad. J. of Plant Pathology. – 2003. – Vol. 25. – P. 406–410.
90. Scholz-Schroeder, B. K. The sypA, sypB, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D / B. K. Scholz-Schroeder, J. D. Soule, D. C. Gross // Molecular Plant-Microbe Interactions. – 2003. – Vol. 16, № 4. – P. 271–280.
91. Helmann, T. C. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast / T. C. Helmann, A. M. Deutschbauer, S. E. Lindow // Proc. of the Nat. Acad. of Sci. of the USA. – 2019. – Vol. 116, № 38. – P. 18900–18910.
92. Bensaci, M. F. The bioactive properties of syringomycin e-rhamnolipid mixtures and syringopeptins : diss. … dr of philosophy in biology / M. F. Bensaci. – Logan, Utah, 2009. – 173 p.
93. Interaction of syringomycin E structural analogues with biological and model membranes / M. Dalla Serra [et al.] // Pseudomonas syringae and related pathogens : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 207–215.
94. A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence / E. Arrebola [et al.] // Molecular Plant-Microbe Interactions. – 2007. – Vol. 20, № 5. – P. 500–509.
95. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae / M. S. H. Hwang [et al.] // Appl. a. Environmental Microbiology. – 2005. – Vol. 71, № 9. – P. 5182–5191.
96. Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthess / E. Arrebola [et al.] // Physiological and Molecular Plant Pathology. – 2003. – Vol. 63. – P. 117–127.
97. Methylome response to proteasome inhibition by Pseudomonas syringae virulence factor Syringolin A / D. M. V. Bonnet [et al.] // Molecular Plant-Microbe Interactions. – 2023. – Vol. 36 (11). – P. 693–704.
98. Schellenberg, B. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition / B. Schellenberg, C. Ramel, R. Dudler // Molecular Plant-Microbe Interactions. – 2010. – Vol. 23 (10). – P. 1287– 1293.
99. Cody, Y. S. Characterization of pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae / Y. S. Cody, D. C. Gross // Appl. a. Environmental Microbiology. – 1987. – Vol. 53, № 5. – P. 928–934.
100. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a / J. W. Greenwald [et al.] // PLoS ONE. – 2012. – Vol. 7, iss. 4. – Art. e34804. https://doi.org/10.1371/journal.pone.0034804
101. Горшков, В. Ю. Бактериозы растений: молекулярные основы формирования растительно-микробных патосистем / В. Ю. Горшков. – Казань: Изд-во Сергея Бузукина, 2017. – 304 с.
102. Биологическая защита растений / М. В. Штерншис [и др.] ; под ред. М. В. Штерншис. – М. : Колос, 2004. – 264 с.
103. Doksöz, S. F. Biological control of Pseudomonas savastanoi pv. savastanoi causing the olive knot disease with epiphytic and endophytic bacteria / S. F. Doksöz, İ. A. Bozkurt // J. of Plant Pathology. – 2021. – № 104 (6). – P. 65–78.
104. Loper, J. E. Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surface / J. E. Loper, S. E. Lindow // Ecology a. Epidemiology. – 1987. – Vol. 77, № 10. – P. 1449–1454.
105. Embaby, A. M. Unusual non-fluorescent broad spectrum siderophore activity (SID EGYll) by Pseudomonas aeruginosa strain EGYll DSM 101801 and a new insight towards simple siderophore bioassay / A. M. Embaby, Y. Heshmat, A. Hussein // AMB Express. – 2016. – Vol. 6 (1). – Art. 26. https://doi.org/10.1186/s13568-016-0192-1
106. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection / F. Taguchi [et al.] // J. of Bacteriology. – 2010. – Vol. 191, № 1. – P. 117–126.
107. Berti, A. D. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a / A. D. Berti, M. G. Thomas // J. of Bacteriology. – 2009. – Vol. 191, № 14. – P. 4594–4604.
108. Bioinformatics analysis of the complete genome sequence of the mango tree pathogen Pseudomonas syringae pv. syringae UMAF0158 reveals traits relevant to virulence and epiphytic lifestyle / P. M. Martínez-García [et al.] // PLoS ONE. – 2015. – 10. – Art. e0136101. https://doi.org/10.1371/journal.pone.0136101
109. Блажевич, О. В. Металлсвязывающая способность флуоресцирующих пигментов бактерий рода Pseudomonas / О. В. Блажевич, Н. П. Максимова // Микробиология и биотехнология на рубеже XXI столетия : материалы Междунар. конф., посвящ. 25-летию Ин-та микробиологии НАН Беларуси, Минск, 1–2 июня 2000 г. / Нац. акад. наук Беларуси [и др.] ; отв. ред.: А. Г. Лобанок, Л. И. Стефанович. – Минск, 2000. – С. 25–26.
110. Lamichhane, J. R. A new medium for the detection of fluorescent pigment production by pseudomonads / J. R. Lamichhane, L. Varvaro // Plant Pathology. – 2012. – Vol. 62, № 3. – P. 624–632.
111. Bultreys, A. Diversity among Pseudomonas syringae strains from Belgian orchards / A. Bultreys, I. Gheysen // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 69–77.
112. Микробные сидерофоры: строение, свойства и функции / В. В. Леонов [и др.] // Астрах. мед. журн. – 2016. – Т. 11, № 4. – С. 24–37.
113. King, E. O. Two simple media for the demonstration of pyocyanin and fluorescin / E. O. King, M. K. Ward, D. E. Raney // J. of Laboratory and Clinical Medicine. – 1954. – Vol. 44, № 2. – P. 301–307.
114. Waturangi, S. D. E. Distribution of ice nucleation active (INA) bacteria from rain-water and air / S. D. E. Waturangi // HAYATI J. of Biosci. – 2011. – Vol. 18, № 3. – P. 108–112.
115. Toward understanding bacterial ice nucleation / M. Lukas [et al.] // The J. of physical chemistry B. – 2022. – Vol. 126. – P. 1861–1867.
116. Araujo, G. G. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions / G. G. de Araujo [et al.] // Sci. Rep. – 2019. – Vol. 9. – Art. 7768. https://doi.org/10.1038/s41598-019-44283-3
117. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle / C. E. Morris [et al.] // The ISME J. – 2008. – Vol. 2. – P. 321–334.
118. Xin, X.-F. Pseudomonas syringae: what it takes to be a pathogen / X.-F. Xin, B. Kvitko, S. Y. He // Nature Rev. Microbiology. – 2018. – Vol. 16, № 5. – P. 316–328.
119. Гулевский, А. К. Белки-нуклеаторы бактериального происхождения. Регуляция активности и значение в природе и биотехнологии / А. К. Гулевский, Л. И. Релина // Теорет. и эксперим. криобиология. – 2010. – Т. 20, № 3. – С. 225–234.
120. Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments / Y. J. Han [et al.] // Intern. J. of Biological Macromolecules. – 2017. – Vol. 94. – P. 634–641.
121. Lindow, S. E. The role of bacterial ice nucleation in frost injury to plants / S. E. Lindow // Annu. Rev. of Phytopathology. – 1983. – Vol. 21. – P. 363–384.
122. First report of Pseudomonas syringae pv. syringae associated with bacterial blossom blast on apple (Malus pumila) in the United States / K. Gasic [et al.] // Plant disease. – 2018. – Vol. 102, № 9. – P. 1848.
123. Molecular epidemiology of Pseudomonas syringae pv. syringae causing bacterial leaf spot of watermelon and squash in Florida / E. A. Newberry [et al.] // Plant disease. – 2018. – Vol. 102. – P. 511–518.
124. Pseudomonas syringae Hrp type III secretion system and effector proteins / A. Collmer [et al.] // Proc. of the Nat. Acad. of Sci. of the USA. – 2000. – Vol. 97, № 16. – P. 8770–8777.
125. Block, A. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? / A. Block, J. R. Alfano // Current Opinion in Microbiology. – 2011. – Vol. 14. – P. 39–46.
126. HopH1 effectors of Pseudomonas syringae pv. tomato DC3000 and pv. syringae B728a induce HR cell death in non-host eggplant Solanum torvum / K. Nahar [et al.] // J. of General Plant Pathology. – 2021. – Vol. 87. – P. 24–29.
127. Regulation and detection of effectors translocated by Pseudomonas syringae / S. W. Hutcheson [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 147–156.
128. Lelliott, R. A. A determinative scheme for the fluorescent plant pathogenic Pseudomonas / R. A. Lelliott, E. Billing, A. C. Hayward // J. of Appl. Bacteriology. – 1966. – Vol. 29, № 3. – P. 470–489.
129. Copper as signal for alginate synthesis in Pseudomonas syringae pv. syringae / S. P. Kidambi [et al.] // Appl. a. Environmental Microbiology. – 1995. – Vol. 61, № 6. – P. 2172–2179.
130. AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae / A.Peñaloza-Vázquez [et al.] // Microbiology. – 2004. – Vol. 150. – P. 2727–2737.
131. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl like polysaccharide / Z. Heredia-Ponce [et al.] // NPJ Biofilms a. Microbiomes. – 2020. – Vol. 6 (1). – Art. 37. https://doi.org/10.1038/s41522-020-00148-6
132. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae / J. Yu [et al.] // Molecular microbiology. – 1999. – Vol. 33, № 4. – P. 712–720.
133. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae / H. Laue [et al.] // Microbiology. – 2006. – Vol. 152. – P. 2909–2918.
134. Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides / P. S. Krishna [et al.] // J. of Experimental Botany. – 2022. – Vol. 73, № 7. – P. 2206–2221.
135. Expression of extra-cellular levansucrase in Pseudomonas syringae is controlled by the in planta fitness-promoting metabolic repressor HexR / A. Mehmood [et al.] // BMC Microbiology. – 2015. – Vol. 15. – Art. 48. https://doi.org/10.1186/s12866-015-0349-0
136. Complete genome assembly of the levan-positive strainPVFi1 of Pseudomonas savastanoi pv. savastanoiisolated from olive knots in Central Italy / S. Turco [et al.] // Environmental Microbiology Rep. – 2022. – Vol. 14. – Art. 2. https://doi.org/10.1111/1758-2229.13048
137. Li, H. Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae / H. Li, M. S. Ullrich // J. of Bacteriology. – 2001. – Vol. 183. – Art. 11. – P. 3282–3292.
138. Phytobacteriology : principles and practice / ed. J. D. Janse. – Cambridge : CABI, 2005. – 366 p.
139. Gross, M. Demonstration of levan and alginate in bean plants (Phaseolus vulgaris) infected by Pseudomonas syringae pv. phaseolicola / M. Gross, K. Rudolph // J. of Phytopathology. – 1987. – Vol. 120, iss. 1. – P. 9–19.
140. Желдакова, Р. А. Фитопатогенные микроорганизмы : учеб.-метод. комплекс / Р. А. Желдакова, В. Е. Мямин. – Минск : БГУ, 2006. – 116 c.
141. Ertimurtaş, D. Classical and molecular diagnosis of Pseudomonas syringae pathovars causing bacterial canker on stone fruits / D. Ertimurtaş, H. Özaktan // J. of Turkish Phytopathology. – 2020. – Vol. 49, № 3. – P. 55–61.
142. Diversity, pathogenicity and biocontrol efficacy of Pseudomonas syringae isolated from plants in northern Jordan / F. A. Almomani [et al.] // Romanian Biotechnological Letters. – 2022. – Vol. 27, № 1. – P. 3264–3269.
143. Rapid evaluation of pathogenicity in Pseudomonas syringae pv. syringae with a lilac tissue culture bioassay and syringomycin DNA probes / H. J. Scheck [et al.] // Plant Disease. – 1997. – Vol. 81, № 8. – P. 905–910.
144. Pseudomonas syringae pv. syringae from cool climate Australian grapevine vineyards: new phylogroup PG02f associated with bacterial inflorescence rot / S. J. Hall [et al.] // Plant Pathology. – 2019. – Vol. 68, iss. 2. – P. 312–322.
145. Lindow, S. E. Bacterial ice nucleation: a factor in frost injury to plants / S. E. Lindow, D. C. Arny, C. D. Upper // Plant Physiology. – 1982. – Vol. 70. iss. 4. – P. 1084–1089.
146. Identification of genes involved in the glycosylation of modified viosamine of flagellins in Pseudomonas syringae by mass spectrometry / M. Yamamoto [et al.] // Genes. – 2011. – Vol. 2. – P. 788–803.
147. Polysaccharides of pseudomonas pathovar strains that infect pea, tomato, and soya bean / S. Datta [et al.] // Current microbiology. – 2004. – Vol. 49, № 1. – P. 35–41.
148. Diversity of pathogenic Pseudomonas isolated from citrus in Tunisia / M. Oueslati [et al.] // AMB Express. – 2020. – Vol. 10. – Art. 198. https://doi.org/10.1186/s13568-020-01134-z
149. Jagannadham, M. V. Identification of outer membrane proteins from an Antarctic bacterium Pseudomonas syringae Lz4W / M. V. Jagannadham, E. F. Abou-Eladab, H. M. Kulkarni // Molecular & Cellular Proteomics. – 2011. – Vol. 10, iss. 6. https://doi.org/10.1074/mcp.M110.004549
150. Афанасьев, М. В. MALDI-ToF масс-спектрометрический анализ для идентификации возбудителей чумы, холеры и туляремии / М. В. Афанасьев, Л. В. Миронова, С. В. Балахонов // Молекуляр. генетика, микробиология и вирусология. – 2015. – № 2. – С. 3–8.
151. Sorensen, K. N. PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains / K. N. Sorensen, K.-H. Kim, J. Y. Takemoto // Appl. a. Environmental Microbiology. – 1998. – Vol. 64, № 1. – P. 226–230.
152. Quigley, N. B. SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-binding secretion proteins / N. B. Quigley, Y.-Y. Mo, D. C. Gross // Molecular Microbiology. – 1993. – Vol. 9, № 4. – P. 787–801.
153. Khezri, M. Identification and characterization of Pseudomonas syringae pv. syringae strains from various plants and geographical regions / M. Khezri, M. Mohammadi // J. of Plant Protection Res. – 2018. – Vol. 58, № 4. – P. 354–361.
154. Doolotkeldieva, T. Characterization of Pseudomonas syringae pv. syringae from diseased stone fruits in Kyrgyzstan and testing of biological agents against pathogen / T. Doolotkeldieva, S. Bobusheva // Intern. J. of Phytopathology. – 2020. – Vol. 9, № 2. – P. 71–91.
155. Kerkoud, M. Rapid diagnostic of Pseudomonas syringae pv. papulans, the causal agent of blister spot of apple, by polymerase chain reaction using specifically designed hrpL gene primers / M. Kerkoud, C. Manceau, J. P. Paulin // Phytopathology. – 2002. – Vol. 92, № 10. – P. 1077–1083.
156. Попкова, К. В. Общая фитопатология : учеб. для вузов / К. В. Попкова. – 2-е изд., перераб. и доп. – М. : Дрофа, 2005. – 445 с.
157. Valencia-Botin, A. J. Review of the studies and interactions of Pseudomonas syringae pathovars on wheat / A. J. Valencia-Botin, M. E. Cisneros-López // Intern. J. of Agronomy. – 2012. – Vol. 2012, iss. 1. – Art. 692350. https://doi.org/10.1155/2012/692350
158. Чувствительность фитопатогенных бактерий Erwinia amylovora и Pseudomonas syringae к медьсодержащим фунгицидам / А. А. Джаймурзина [и др.] // Защита картофеля. – 2014. – № 2. – С. 33–35.
159. Голышин, Н. М. Фунгициды / Н. М. Голышин. – М. : Колос, 1993. – 319 с.
160. Bender, C. L. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance / C. L. Bender, D. A. Cooksey // J. of Bacteriology. – 1986. – Vol. 165, № 2. – P. 534–541.
161. Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid / T. J. Burr [et al.] // Phytopathology. – 1988. – Vol. 78, № 4. – P. 410–413.
162. Copper Resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids / F. M. Cazorla [et al.] // Phytopathology. – 2002. – Vol. 92, № 8. – P. 909–916.
163. Characterization of Pseudomonas syringae pv. syringae isolated from mango in Sicily and occurrence of copper-resistant strains / D. Aiello [et al.] // J. of Plant Pathology. – 2015. – Vol. 97, № 2. – P. 273–282.
164. Tarakanov, R. I. Genetic and phenotypical diversity of Pseudomonas syringae population in the Russian Federation / R. I. Tarakanov, A. N. Ignatov, F. S.-U. Dzhalilov // Brazilian J. of Biology. – 2022. – Vol. 84. – Art. e264224. https://doi.org/10.1590/1519-6984.264224
165. Spotts, R. A. Copper, oxy tetracycline, and streptomycin resistance of Pseudomonas syringae pv. syringae strains from pear orchards in Oregon and Washington / R. A. Spotts, L. A. Cervantes // Plant Disease. – 1995. – Vol. 79, № 11. – P. 1132–1135.
166. Epiphytic fitness of Pseudomonas syringae pv. syringae on mango trees is increased by 62-Kb plasmids / F. M. Cazorla [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 79–88.
167. Copper-tolerance in Pseudomonas syringae pv. tomato and Xanthomonas spp. and the control of diseases associated with these pathogens in tomato and pepper. A systematic literature review / K. Griffin [et al.] // Crop protection. – 2017. – Vol. 96. – P. 144–150.
168. Huang, T. C. Characterization of plasmids that encode streptomycin resistance in bacterial epiphytes of apple / T. C. Huang, T. J. Burr // J. of Appl. Microbiology. – 1999. – Vol. 86 (5). – P. 741–751.
169. Cameron, A. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives / A. Cameron, V. Sarojini // Plant Pathology. – 2014. – Vol. 63, iss. 1. https://doi.org/10.1111/ppa.12066
170. Chiou, C. S. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria / C. S. Chiou, A. L. Jones // J. of Bacteriology. – 1993. – Vol. 175, № 3. – P. 732–740.
171. Innovative Delivery of Cu(II) ions by a nanostructured hydroxyapatite: potential application in planta to enhance the sustainable control of Plasmopara viticola / E. Battiston [et al.] // Phytopathology. – 2019. – Vol. 109 (5). – P. 748–759.
172. Mikiciński, A. Efficacy of fungicides and essential oils against bacterial diseases of fruit trees / A. Mikiciński, P. Sobiczewski, S. Berczyński // J. of Plant Protection Res. – 2012. – Vol. 52, № 4. – P. 467–471.
173. Курилова, Д. А. Сравнительная оценка эффективности тирамсодержащих фунгицидов в отношении бактериоза семян сои / Д. А. Курилова // Рисоводство. – 2021. – Т. 53, № 4. – С. 62–65.
174. Горобей, И. М. Проблема бактериозов растений и подходы к ее решению / И. М. Горобей, Г. М. Осипова // Сиб. вестн. с.-х. науки. – 2017. – Т. 47, № 4. – С. 94–102.
175. Conlin, K. C. Effectiveness of selected chemicals in inhibiting Pseudomonas syringae pv. tomato in vitro and in controlling bacterial speck / K. C. Conlin, S. M. MсCarter // Plant Disease. – 1983. – Vol. 67, № 6. – Р. 639–644.
176. Tarakanov, R. I. Using of essential oils and plant extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean / R. I. Tarakanov, F. S.-U. Dzhalilov // Plants (Basel). – 2022. – Vol. 11 (21). – P. 2989.
177. Seed and soil treatments with a natural fungicide product against some fungal and bacterial diseases of vegetables [Electronic resource]. – Mode of access: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20063209990. – Date of access: 28.04.2023.
178. Identification and characterization of Pseudomonas syringae pv. syringae, a causative bacterium of apple canker in Korea / S. Lee [et al.] // The Plant Pathology J. – 2023. – Vol. 39 (1). – P. 88–107.
179. Carbal, J. P. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae / J. P. Cabral // Canad. J. of Microbiology. – 1992. – Vol. 38, № 2. – P. 115–123.
180. Carbal, J. P. Damage to the cytoplasmic membrane and cell death caused by dodine (dodecylguanidine monoacetate) in Pseudomonas syringae ATCC 12271 / J. P. Cabral // Antimicrobial agents and chemotherapy. – 1991. – Vol. 35, № 2. – P. 341–344.
181. Cabral, J. P. Dodecylguanidine monoacetate (dodine) causes severe membrane damage in Pseudomonas syringae above the critical micelle concentration / J. P. Carbal // J. of Basic Microbiology. – 1993. – Vol. 33, № 4. – P. 219–225.
182. Moragrega, C. Evaluation of drench treatments with phosphonate derivatives against Pseudomonas syringae pv. syringae on pear under controlled environment conditions / C. Moragrega, C. Manceau, E. Montesinos // Europ. J. of Plant Pathology. – 1998. – Vol. 104 (2). – P. 171–180.
183. Postiva fungicide technical bulletin [Electronic resource]. – Mode of access: https://assets.greencastonline.com/pdf/media/syng_7180_1_4_Postiva_TechBulletin_final_LR_singles.pdf. – Date of access: 29.04.2023.
184. Miravis® Era Co-Pack. Safety data sheet [Electronic resource]. – Mode of access: https://assets.syngenta.ca/pdf/ca/msds/Miravis_Era_copack_en_sds.pdf. – Date of access: 29.04.2023.
185. Bactericidal compounds controlling growth of the plant pathogen Pseudomonas syringae pv. actinidiae, which forms biofilms composed of a novel exopolysaccharide / S. Ghods [et al.] // Appl. a. Environmental Microbiology. – 2015. – Vol. 81, № 12. – P. 4026–4036.
186. Honório, A. P. Effect of Bayfolan® copper on the control of Pseudomonas syringae pv. garcae in vitro / A. P. Honório, R. R. Goulartm, E. M. Baquião // Rev. Agrogeoambiental. – 2019. – Vol. 11, № 4. – P. 43–51.
187. Javadi-Dodaran, N. Isolation and characterization of bacterial endophytes from weeds against Pseudomonas syringae pv. syringae causing bacterial canker of stone fruit trees / N. Javadi-Dodaran, R. Khakvar, N. Aliasgarzad // Fundamental a. Appl. Agriculture. – 2022. – Vol. 7, № 2. – P. 104–111.
188. Mougou, I. Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract / I. Mougou, N. Boughalleb-Mhamdi // Egyp. J. of Biological Pest Control. – 2018. – Vol. 28. – Art. 60. https://doi.org/10.1186/s41938-018-0061-0
189. Wangspa, R. Role of ergosterol in growth inhibition of Saccharomyces cerevisiae by syringomycin E / R. Wangspa, J. Y. Takemoto // FEMS Microbiology Letters. – 1998. – Vol. 167 (2). – P. 215–220.
190. Popović, T. Antagonistic activity of Bacillus and Pseudomonas soil isolates against Pseudomonas syringae pv. syringae / T. Popović // Proc. of the intern. symp. on current trends in plant protection, Belgrade, Serbia, 25–28th Sept. 2012 / Inst. for Plant Protection a. Environment, 2012. – P. 352–356.
191. Конструирование бактериофагового препарата для биоконтроля Pseudomonas syringae в растениеводстве / В. Д. Васильев [и др.] // Вестн. Ульян. гос. c.-х. акад. – 2020. – С. 130–137.
192. Самойлова, А. Бактериофаги Pseudomonas syringae pv. syringae перспективные в подавлении развития бактериального рака плодовых / А. Самойлова // Genetica, fiziologia şi ameliorarea plantelor : VIIth Intern. sci. conf., Chişinău, Moldova, 4–5 octombrie 2021. – P. 327 – 329. https://doi.org/10.53040/gppb7.2021.88
193. Григорцевич, Л. Н. Бактериофаг против возбудителя бактериоза плодовых / Л. Н. Григорцевич, А. Ф. Былинский // Актуальные проблемы биологической защиты растений : материалы науч.-практ. конф., Минск, 12–14 нояб. 1998 г. / М-во сел. хоз-ва и продовольствия Респ. Беларусь, Акад. аграр. наук Респ. Беларусь, Белорус. науч.-исслед. ин-т защиты растений. – Минск, 1998. – С. 46.
194. Григорцевич, Л. Н. Биологические средства в интегрированной системе защиты от болезней семечковых культур / Л. Н. Григорцевич // Эколого-экономические основы усовершенствования интегрированных систем защиты растений от вредителей, болезней и сорняков : тез. докл. науч.-произв. конф., посвящ. 25-летию БелНИИЗР, Минск – Прилуки, 14–16 февр. 1996 г. / Белорус. науч.-исслед. ин-т защиты растений. – Минск, 1996. – Ч. 1. – С. 106–107.
195. Григорцевич, Л. Н. Эффективность лечебных замазок при залечивании ран, вызванных возбудителями раковых заболеваний / Л. Н. Григорцевич, В. Н. Копиця // Современные проблемы плодоводства : тез. докл. науч. конф., посвящ. 70-летию Белорус. науч.-исслед. ин-та плодоводства, Самохваловичи, 9–13 окт. 1995 г. / Мин. сел. хоз-ва и продовольствия Респ. Беларусь, Акад. аграр. наук Респ. Беларусь, Белорус. науч.-исслед. ин-т плодоводства ; редкол.: В. А. Самусь (гл. ред.) [и др.]. – Самохваловичи, 1995. – С. 96–97.
196. Оптимизация технологических параметров культивирования бактериофагов, перспективных для контроля фитопатогенных бактерий рода Pseudomonas / Т. А. Пилипчук [и др.] // Eurasian J. of Appl. Biotechnology. – 2021. – Т. 3. – С. 28–40.
197. Пилипчук, Т. А. Особенности молекулярно-генетической организации Pseudomonas Phage БИМ BV-45 Д / Т. А. Пилипчук, А. Э. Охремчук, Э. И. Коломиец // Вес. Нац. акад. навук Беларусі. Сер. біял. навук. – 2022. – Т. 67, № 2. – С. 190–196.
198. Study on antibacterial effect of essential oils of six plant species against Pseudomonas syringae pv. syringae Van Hall 1902 and Pseudomonas fluorescens Migula 1894 / B. Shabani [et al.] // J. of Plant Pathology. – 2019. – Vol. 101 (3). – P. 671–675.
199. Kokoskova, B. Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants / B. Kokoskova, D. Pouvova, R. Pavela // J. of Plant Pathology. – 2011. – Vol. 93, № 1. – P. 133–139.
200. A volatile signal controls virulence in the plant pathogen Pseudomonas syringae pv. syringae and a strategy for infection control in organic farming [Electronic resource]. – Mode of access: https://europepmc.org/article/PPR/PPR215706. – Date of access: 29.04.2023.
201. Коновалова, Н. А. Устойчивость груши к бактериальному раку и парше / Н. А. Коновалова // Защита растений в Республиках Прибалтики и Белоруссии : тез. докл. науч.-практ. конф., 25–26 сент. 1985 г. / Запад. отд-ние Всесоюз. акад. с.-х. наук им. В. И. Ленина [и др.] ; редкол.: В. А. Щербаков (науч. ред. и сост.) [и др.], Таллин, 1985. – Ч. II. – С. 30–31.
202. Susceptibility of European pear cultivars to Pseudomonas syringae pv. syringae using immature fruit and detached leaf assays / C. Moragrega [et al.] // Europ. J. of Plant Pathology. – 2003. – Vol. 109. – P. 319–326.
203. Bedford, K. E. Use of a detached leaf bioassay for screening sweet cherry cultivars for bacterial canker resistance / K. E. Bedford, P. L. Sholberg, F. Kappel // Acta Horticulturae. – 2003. – Vol. 622. – P. 365–368. https://doi.org/10.17660/ActaHortic.2003.622.37