Кот В. А. ВЫСОКОТОЧНЫЕ ПОЛИНОМИАЛЬНЫЕ РЕШЕНИЯ КЛАССИЧЕСКОЙ ЗАДАЧИ СТЕФАНА. Доклады Национальной академии наук Беларуси. 2017;61(6):112-122.
1. Gupta, S. C. The Classical Stefan Problem. Basic Concepts, Modelling and Analysis / S. C. Gupta. – Amsterdam: Elsevier, 2003. – 818 p.
2. Kumar, A. R. A review on phase change materials and their applications / A. R. Kumar, А. Kumar // Int. J. Adv. Res. Eng. Tech. – 2012. – Vol. 3, N 2. – P. 214–225.
3. Henry, H. H. Mathematical modelling of solidification and melting: a review / H. H. Henry, S. A. Argyropoulos // Modelling Simul. Mater. Sci. Eng. – 1996. – Vol. 4, N 4. – P. 371–396. doi.org/10.1088/0965-0393/4/4/004
4. Tarzia, D. A. Explicit and Approximated Solutions for Heat and Mass Transfer Problems with a Moving Interface / D. A. Tarzia // Advanced Topics in Mass Transfer / ed. M. El-Amin. – InTech, 2011. – Chapter 20. – P. 439–484. doi. org/10.5772/14537
5. Mitchell, S. L. Application of heat balance integral methods to one-dimensional phase change problems / S. L. Mitchell, T. G. Myers // Int. J. Diff. Eq. – 2012. – Vol. 2012. – Article ID 187902. – P. 1–22. doi.org/10.1155/2012/187902
6. Myers, T. G. Optimal exponent heat balance and refined integral methods applied to Stefan problems / T. G. Myers // Int. J. Heat and Mass Transfer. – 2010. – Vol. 53, N 5–6. – P. 1119–1127. doi.org/10.1016/j.ijheatmasstransfer.2009.10.045
7. Sadoun, N. On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions / N. Sadoun, E. K. Si-Ahmed, P. Colinet // Appl. Math. Model. – 2006. – Vol. 30, N 6. – P. 531–544. doi.org/10.1016/j. apm.2005.06.003
8. Kоt, V. A. Integral Method of Boundary Characteristics: The Dirichlet Condition. Principles / V. A. Kot // Heat Transfer Res. – 2016. – Vol. 47, N 11. – P. 1035–1055. doi.org/10.1615/heattransres.2016014882
9. Kot, V. A. Integral Method of Boundary Characteristics: The Dirichlet Condition. Analysis / V. A. Kot // Heat Transfer Res. – 2016. – Vol. 47, N 10. – P. 927–944. doi.org/10.1615/heattransres.2016014883
10. Caldwell, J. A brief review of several numerical methods for one-dimensional Stefan problems / J. Caldwell, Y. Y. Kwan // Therm. Sci. – 2009. – Vol. 13, N 2. – P. 61–72. doi.org/10.2298/tsci0902061c
11. Mitchell, S. L. Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems / S. L. Mitchell, M. Vynnycky // Appl. Math. and Comput. – 2009. – Vol. 215, N 4. – P. 1609–1621. doi. org/10.1016/j.amc.2009.07.054
12. Mosally, F. A. An exponential heat balance integral method / F. A. Mosally, A. S. Wood, A. Al-Fhaid // Appl. Math. Comput. – 2002. – Vol. 130, N 1. – P. 87–100. doi.org/10.1016/s0096-3003(01)00083-2
13. Kutluay, S. The numerical solution of one-phase classical Stefan problem / S. Kutluay, A. R. Bahadir, A. Ozdes // J. Comput. Appl. Math. – 1997. – Vol. 81, N 1. – P. 135–144. doi.org/10.1016/s0377-0427(97)00034-4
14. Kutluay, S. An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition / S. Kutluay, A. Elsen // Appl. Math. Comput . – 2004. – Vol. 150, N 1. – P. 59–67. doi.org/10.1016/s0096- 3003(03)00197-8
15. Whue-Teong, A. A numerical method on integro-differential formulation for solving a one-dimensional Stefan problem / A. Whue-Teong // Numerical Methods for Partial Differential Equations. – 2008. – Vol. 24, N 3. – P. 939–949. doi. org/10.1002/num.20298