1. DFT Study of NO Reduction Process on Ag/γ-Al2O3 Catalyst: Some Aspects of Mechanism and Catalyst Structure / V. E. Matulis [et al.] // J. Phys. Chem. C. – 2021. – Vol. 125, N 1. – P. 419–426. https://doi.org/10.1021/acs.jpcc.0c08417
2. Рагойжа, Е. Г. Разработка подхода к квантовохимическим исследованиям катализаторов восстановления оксидов азота на основе диоксида титана и гетерополикислот / Е. Г. Рагойжа, В. Э. Матулис, О. А. Ивашкевич // Свиридовские чтения: сб. ст. / редкол.: О. А. Ивашкевич (пред.) [и др.]. – Минск, 2022. – Вып. 18. – С. 54–66.
3. Correlating DFT-Calculated Energy Barriers to Experiments in Nonheme Octahedral FeIVO Species / K. B. Cho [et al.] // Chem. Eur. J. – 2012. – Vol. 18, N 33. – P. 10444–10453. https://doi.org/10.1002/chem.201200096
4. Synergistic Effects of Keggin-Type Phosphotungstic Acid-Supported Single-Atom Catalysts in a Fast NH3-SCR Reaction / C. H. Lin [et al.] // Inorg. Chem. – 2022. – Vol. 61, N 48. – P. 19156–19171. https://doi.org/10.1021/acs.inorgchem.2c02759
5. Piccini, G. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy / G. Piccini, M. Alessio, J. Sauer // Angew. Chem. Int. Ed. – 2016. – Vol. 55, N 17. – P. 5235–5237. https://doi.org/10.1002/anie.201601534
6. Anharmonic Correction to Adsorption Free Energy from DFT-Based MD Using Thermodynamic Integration / J. Amsler [et al.] // J. Chem. Theory Comput. – 2021. – Vol. 17, N 2. – P. 1155–1169. https://doi.org/10.1021/acs.jctc.0c01022
7. De Wispelaere, K. Toward Computing Accurate Free Energies in Heterogeneous Catalysis: a Case Study for Adsorbed Isobutene in H-ZSM-5 / K. De Wispelaere, P. N. Plessow, F. Studt // ACS Phys. Chem. Au. – 2022. – Vol. 2, N 5. – P. 399–406. https://doi.org/10.1021/acsphyschemau.2c00020
8. Gaussian 16, Revision E.01 / M. J. Frisch [et al.]. – Gaussian, Inc., Wallingford CT, 2016.
9. Simon, S. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? / S. Simon, M. Duran, J. J. Dannenberg // J. Chem. Phys. – 1996. – Vol. 105, N 24. – P. 11024–11031. https://doi.org/10.1063/1.472902
10. A Multitechnique Study of CO Adsorption on the TiO2 Anatase (101) Surface / M. Setvin [et al.] // J. Phys. Chem. C. – 2015. – Vol. 119, N 36. – P. 21044–21052. https://doi.org/10.1021/acs.jpcc.5b07999
11. Thermodynamics of Carbon Monoxide Adsorption on Polycrystalline Titania Studied by Static Adsorption Microcalorimetry / X. Xia [et al.] // Langmuir. – 2007. – Vol. 23, N 22. – P. 11063–11066. https://doi.org/10.1021/la7014594
12. Xia, X. Entropy of adsorption of carbon monoxide on energetically heterogeneous surfaces / X. Xia, R. Naumann d’Alnoncourt, M. Muhler // J. Therm. Anal. Calorim. – 2007. – Vol. 91. – P. 167–172. https://doi.org/10.1007/s10973-007-8440-x
13. Cox, J. D. CODATA Key Values for Thermodynamics / J. D. Cox, D. D. Wagman, V. A. Medvedev. – New York, 1984. – 271 p.
14. Campbell, C. T. Equilibrium Constants and Rate Constants for Adsorbates: Two-Dimensional (2D) Ideal Gas, 2D Ideal Lattice Gas, and Ideal Hindered Translator Models / C. T. Campbell, L. H. Sprowl, L. Árnadóttir // J. Phys. Chem. C. – 2016. – Vol. 120, N 19. – P. 10283–10297. https://doi.org/10.1021/acs.jpcc.6b00975
15. Rezaee, M. The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation / M. Rezaee, S. M. Mousavi Khoie, K. H. Liu // CrystEngComm. – 2011. – Vol. 13, N 16. – P. 5055–5061. https://doi.org/10.1039/c1ce05185g