Сергеев Р. С., Ковалев И. С., Тузиков А. В., Розенталь А. , Габриэлян А. АЛГОРИТМЫ ПОИСКА МУТАЦИЙ ЛЕКАРСТВЕННОЙ УСТОЙЧИВОСТИ В ГЕНОМАХ МИКОБАКТЕРИЙ ТУБЕРКУЛЕЗА. Информатика. 2016;(1):75-91.
1. Borrell, S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis / S. Borrell, S. Gagneux // Intern. J. Tuberc. Lung Dis. – 2009. – № 13(12). – P. 1456–1466.
2. Patterson, N. Population structure and eigenanalysis / N. Patterson, A. L. Price, D. Reich // PLoS Genet. – 2006. – № 2(12). – P. 2074–2093.
3. Mantel, N. Statistical aspects of the analysis of data from retrospective studies of disease / N. Mantel, W. Haenszel // J. National Cancer Inst. – 1959. – № 22(4). – P. 719–748.
4. Principal components analysis corrects for stratification in genome-wide association studies / A.L. Price [et al.] // Nat. Genet. – 2006. – № 38(8). – P. 904–909.
5. Agresti, A. An introduction to categorical data analysis / A. Agresti. – Wiley, 2002. – Ch. 6. – P. 231–236.
6. PLINK: a tool set for whole-genome association and population-based linkage analyses / S. Purcell [et al.] // Am. J. Hum. Genet. – 2007. – № 81(3). – P. 559–575.
7. Bush, W.S. Genome-wide association studies / W.S. Bush, J.H. Moore // PLoS. Comput. Biol. – 2012. – № 8(12). – P. 1–11.
8. Holm, S. A simple sequentially rejective Bonferroni test procedure testing / S. Holm // Scandinavian Journal of Statistics. – 1979. – № 6. – P. 65–70.
9. Benjamini, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing / Y. Benjamini, Y. Hochberg // Journal of the Royal Statistical Society. – 1995. – № 57. – P. 289–300.
10. Ng, A.Y. Feature selection, L1 vs. L2 regularization, and rotational invariance / A.Y. Ng // Proc. of the 21st Intern. Conf. on Machine Learning. – Ban, Canada, 2004.
11. Friedman, J. Regularization paths for generalized linear models via coordinate descent / J. Friedman, T. Hastie, R. Tibshirani // Journal of Statistical Software. – 2010. – № 33(1). – P. 1–22.
12. Henderson, C.R. Sire evaluation and genetic trends / C.R. Henderson // Proc. Anim. Breeding and Genetic Symp. in honor of Dr. J.L. Lush. – Champaign, 1973. – P. 10–41.
13. Zhou, X. Genome-wide efficient mixed-model analysis for association studies / X. Zhou, M. Stephens // Nature Genetics. – 2012. – № 44(7). – P. 821–824.
14. Dobra, A. The Mode oriented stochastic search (MOSS) for log-linear models with conjugate priors / A. Dobra, H. Massam // Statistical Methodology. – 2010. – № 7. – P. 240–253.
15. Applications of the mode oriented stochastic search (MOSS) algorithm for discrete multiway data to genomewide studies / A. Dobra [et al.] // Bayesian Modeling in Bioinformatics. – CRC Press, 2010. – Ch. 3. – P. 63–94.
16. Kolmogorov, V. What energy functions can be minimized via graph cuts? / V. Kolmogorov, R. Zabih // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2004. – № 26(2). – P. 147–159.
17. Tuberculosis drug resistance mutation database / A. Sandgren [et al.] // PLoS Med. – 2009. – № 6(2). – P. 132–136.
18. GenoType MTBDRplus – your test system for a fast and reliable way to detect MDR-TB // Hain Lifesciences [Electronic resource]. – 2015. – Mode of access : http://www.hain- lifescience.de/ en/products/microbiology/mycobacteria/genotype-mtbdrplus.html. – Date of access : 10.05.2015.
19. GenoType MTBDRsl – your important assistance for detection of XDR-TB // Hain Lifesciences [Electronic resource]. – 2015. – Mode of access : http://www.hain- lifescience.de/en/products/ microbiology/mycobacteria/genotype-mtbdrsl.html. – Date of access : 10.05.2015.
20. Devlin, B. Genomic control for association studies / B. Devlin, K. Roeder // Biometrics. – 1999. – № 55. – P. 997–1004.