TY - JOUR T1 - Сингулярные вейвлеты на конечном интервале JF - Информатика AU - Романчак В. М., Y1 - 2018-09-07 UR - https://www.academjournals.by/publication/18409 N2 - Непараметрические методы применяются в сложных случаях, когда информации о модели недостаточно. В работе развивается новый метод непараметрической аппроксимации - метод сингулярных вейвлетов. Он включает в себя численный алгоритм, основанный на суммировании рекуррентной последовательности функций. Поясняется идея метода сингулярных вейвлетов объединить теорию вейвлетов с ядерными оценками регрессии Надарая - Ватсона. Это объединение реализовано путем регуляризации вейвлет-преобразования. Обычно ядерные оценки рассматривают как пример непараметрического оценивания. Однако один параметр - размытости - все же присутствует в традиционном алгоритме ядерной регрессии. При аппроксимации методом сингулярных вейвлетов происходит суммирование ядерных оценок Надарая - Ватсона по параметру размытости. Рассматривается вариант регуляризации вейвлет-преобразования для конечного интервала. Доказываются теоремы, которые формулируют свойства вейвлет-преобразования с сингулярным вейвлетом. Предлагается алгоритм аппроксимации функции, заданной на конечном интервале, последовательностью вейвлет-преобразований.