Распознавание подстилающей поверхности Земли с помощью сверточной нейронной сети на одноплатном микрокомпьютере
Приводятся результаты разработки программно-аппаратного комплекса (микромодуля) по обнаружению и классификации изображений подстилающей поверхности Земли. Микромодуль используется на борту легких беспилотных летательных аппаратов (дронов). Полученное устройство имеет размеры 5,2×7,4×3,1 см, массу 52 г., работает на одноплатном микрокомпьютере модели Raspberry Pi Zero Wireless и использует сверточную нейронную сеть на основе архитектуры MobileNetV2 для классификации изображений в реальном времени. При разработке микромодуля авторы преследовали цель добиться качества классификации изображений в реальном времени на недорогом мобильном оборудовании с малой вычислительной способностью, сопоставимого с качеством классификации популярными архитектурами глубоких сверточных сетей. Приведенные в статье сведения могут быть полезны инженерам и научным работникам, разрабатывающим компактные бюджетные мобильные системы обработки, анализа и распознавания изображений.