1. Zhong, X. Stealthy malware traffic – not as innocent as it looks / X. Zhong, Y. Fu, R. Brooks // Malicious and Unwanted Software (MALWARE) : 10th Intern. Conf., Fajardo, 20–22 Oct. 2015. – Fajardo, 2015. – P. 110–116.
2. On botnets that use DNS for command and control / C. Deitrich [et al.] // Computer Network Defense : 7th European Conf. on Computer Network Defense, Gotheburg, 6–7 Sept. 2011. – Gotheburg, 2011. – P. 9–16.
3. Valenzuela, I. Game changer: identifying and defending against data exfiltration attempts [Electronic resource] // SANS Cyber Security Summit Archive. – 2015. – Mode of access: https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1493840468.pdf. – Date of access: 15.02.2020.
4. Bubnov, Y. DNS tunneling queries for binary classification [Electronic resource] / Y. Bubnov // Mendeley Data. – N. Y., 2019. – Vol. 1. – Mode of access: https://data.mendeley.com/datasets/mzn9hvdcxg/1. – Date of access: 15.02.2020.
5. A bigram based real time DNS tunnel detection approach / C. Qi [et al.] // Procedia Computer Science. – 2013. – Vol. 17. – P. 852–860.
6. Born, K. Detecting DNS tunneling using character frequency analysis / K. Born, D. Gustafson // Proc. of the 9th Annual Security Conf., Las Vegas, 7–8 Apr. 2010. – Las Vegas, 2010. – P. 2–3.
7. Nadler, A. Detection of malicious and low throughput data exfiltration over the DNS protocol / A. Nadler, A. Aminov, A. Shabtai. – 2018. – Mode of access: https://arxiv.org/abs/1709.08395. – Date of access: 15.02.2020.
8. Berg, A. Identifying DNS-tunneled Traffic with Predictive Models [Electronic resource] / A. Berg, D. Forsberg. – 2019. – Mode of access: https://arxiv.org/abs/1906.11246. – Date of access: 12.01.2020.
9. Лукацкий, А. Об утечках через DNS, которые не ловит ни одна DLP [Электронный ресурс] / А. Лукацкий // Бизнес без опасности. – 2018. – Режим доступа: https://www.securitylab.ru/blog/personal/Business_without_danger/343229.php. – Дата доступа: 07.05.2020.
10. Mockapetris, P. Domain names – implementation and specification [Electronic resource] / P. Mockapetris // Internet Standard, ISI. – 1987. – Mode of access: https://tools.ietf.org/html/rfc1035. – Date of access: 15.02.2020.
11. Character-aware Neural Language Models [Electronic resource] / Y. Kim [et al.]. – 2016. – Mode of access: https://arxiv.org/abs/1508.06615. – Date of access: 12.01.2020.
12. Watson, D. Utilizing Character and Word Embedding for Text Normalization with Sequence-to-Sequence Models [Electronic resource] / D. Watson, N. Zalmout, N. Habash. – 2019. – Mode of access: https://arxiv.org/ abs/1809.01534. – Date of access: 12.01.2020.
13. Gal, Y. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks [Electronic resource] / Y. Gal, Z. Ghahraamni. – 2016. – Mode of access: https://arxiv.org/abs/1512.05287. – Date of access: 12.01.2020.
14. Self-normalizing Neural Networks [Electronic resource] / G. Klambauer [et al.] – 2017. – Mode of access: https://arxiv.org/abs/1706.02515. – Date of access: 12.01.2020.
15. Kingma, D. Adam: a method for stochastic optimization / D. Kingma, J. Ba // 3rd Intern. Conf. for Learning Representations, San Diego, 7–9 May 2015. – San Diego, 2015. – 15 p.
16. Nygren, E. The Akami network: a platform for high-performance internet applications / E. Nygren, Sitaraman, J. Sun // ACM SIGOPS Operating Systems Review. – 2010. – Vol. 44, iss. 3. – P. 2–19.