%0 article %A Николаев Г. И., %A Шульдов Н. А., %A Анищенко А. И., %A Тузиков А. В., %A Андрианов А. М., %T Разработка генеративной состязательной нейронной сети для идентификации потенциальных ингибиторов ВИЧ-1 методами глубокого обучения %D 2020 %R 10.37661/1816-0301-2020-17-1-7-17 %J Информатика %X Методами глубокого обучения разработан генеративный состязательный автоэнкодер для рационального дизайна потенциальных ингибиторов проникновения ВИЧ-1, способных блокировать участок белка gp120 оболочки вируса, критический для его связывания с клеточным рецептором CD4. Были выполнены исследования, включающие создание архитектуры автоэнкодера, формирование молекулярной библиотеки потенциальных лигандов белка gp120 ВИЧ-1 для обучения нейронной сети, молекулярный докинг лигандов с белком gp120 и расчет свободной энергии связывания, генерацию молекулярных дескрипторов химических соединений обучающего набора данных, обучение нейронной сети, оценку результатов обучения и работы автоэнкодера.  Рассмотрены результаты тестирования автоэнкодера на широком наборе соединений из молекулярной библиотеки ZINC. Показано, что совместное использование нейронной сети с виртуальным скринингом баз данных химических соединений формирует продуктивную платформу для идентификации базовых структур, перспективных для создания новых противовирусных препаратов, ингибирующих ранние стадии развития ВИЧ-инфекции. %U https://www.academjournals.by/publication/18294