TY - JOUR T1 - Локальные преобразования с сингулярным вейвлетом JF - Информатика DO - 10.37661/1816-0301-2020-17-1-39-46 AU - Романчак В. М., Y1 - 2020-03-28 UR - https://www.academjournals.by/publication/18291 N2 - Рассматривается локальное вейвлет-преобразование c сингулярным базисным вейвлетом. С помощью последовательности локальных вейвлет-преобразований решается задача непараметрической аппроксимации функции. Традиционно считается, что вейвлет должен иметь среднее значение, равное нулю. Ранее автором рассматривались сингулярные вейвлеты, для которых среднее значение не равно нулю. Например, в качестве вейвлета использовались дельтообразные функции, которые участвуют в оценках Парзена – Розенблатта и Надарая – Ватсона. Для сингулярных вейвлетов была построена последовательность вейвлет-преобразований для всей числовой оси и конечного интервала. В работе предлагается последовательность локальных вейвлет-преобразований, дается определение локального вейвлет-преобразования и доказываются теоремы, которые формулируют его свойства. Для подтверждения эффективности алгоритма приводится пример аппроксимации функции с помощью суммы дискретных локальных вейвлет-преобразований.