1. Garcia, F. Noise removal and real-time detail enhancement of high-dynamic-range infrared images with time consistency / F. Garcia, C. Schockaert, B. Mirbach // Intern. Conf. on Quality Control by Artificial Vision, SPIE Proceedings, Le Creusot, France, 3 June 2015. – Le Creusot, 2015. – Vol. 9534. https://doi.org/10.1117/12.2182896
2. Yang, K.-F. A biological vision inspired framework for image enhancement in poor visibility conditions / K.-F. Yang, X.-S. Zhang, Y.-J. Li // IEEE Transactions on Image Processing. – 2020. – Vol. 29. – P. 1493–1506. https://doi.org/10.1109/tip.2019.2938310
3. Старовойтов, В. В. Адаптивное сжатие широкого динамического диапазона цифровых радарных спутниковых изображений / В. В. Старовойтов // Информатика. – 2018. – № 15(1). – С. 81–91.
4. Lee, J. W. Local tone mapping using K-means algorithm and automatic gamma setting / J. W. Lee, R. Park, S. Chang // IEEE Intern. Conf. on Consumer Electronics (ICCE). – Las Vegas, NV, USA, 2011. – P. 807–808. https://doi.org/10.1109/ICCE.2011.5722876
5. Iwahashi, M. Two layer lossless coding of HDR images / M. Iwahashi, H. Kiya // IEEE Intern. Conf. on Acoustics, Speech and Signal Processing. – Vancouver, BC, Canada, 2013. – P. 1340–1344. https://doi.org/10.1109/ICASSP.2013.6637869
6. Khan, I. R. Tone-mapping using perceptual-quantizer and image histogram / I. R. Khan, W. Aziz, S.-O. Shim // IEEE Access. – 2020. – Vol. 8. – P. 31350–31358. https://doi.org/10.1109/ACCESS.2020.2973273
7. Adaptive contrast adjustment for postprocessing of tone mapped high dynamic range images / M. Narwaria [et al.] // IEEE Intern. Symp. on Circuits and Systems (ISCAS). – Beijing, China, 2013. – P. 1103–1106. https://doi.org/10.1109/ISCAS.2013.6572043
8. Thai, B. C. HDR image tone mapping approach based on near optimal separable adaptive lifting scheme / B. C. Thai, A. Mokraoui, B. Matei // Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). – Poznan, Poland, 2018. – P. 108–113. https://doi.org/10.23919/SPA.2018.8563293
9. Huang, P. Multi-scale bilateral grid for image tone mapping / P. Huang, Z. Su, Z. Li // Intern. Conf. on Multimedia Technology. – Hangzhou, 2011. – P. 3143–3146. https://doi.org/10.1109/ICMT.2011.6003057
10. HDR compression based on image matting Laplacian / C.-C. Huang [et al.] // IEEE Intern. Conf. on Consumer Electronics-Taiwan (ICCE-TW). – Nantou, Taiwan, 2016. – P. 1–2. https://doi.org/10.1109/ICCE-TW.2016.7520957
11. A fast multi-scale decomposition based tone mapping algorithm for High Dynamic Range images / Q. Chen [et al.] // IEEE Intern. Conf. on Systems, Man, and Cybernetics (SMC). – Budapest, 2016. – P. 001455–001460. https://doi.org/10.1109/SMC.2016.7844442
12. High dynamic tone mapping algorithm based on wavelet domain image fusion / W. Liu [et al.] // 13th IEEE Conf. on Industrial Electronics and Applications (ICIEA). – Wuhan, China, 2018. – P. 1945–1950. https://doi.org/10.1109/ICIEA.2018.8398027
13. Lin, Y. High dynamic range image composition using a linear interpolation approach / Y. Lin, M. Huang, C. Wang // IEEE/ACIS 15th Intern. Conf. on Computer and Information Science (ICIS). – Okayama, Japan, 2016. – P. 1–6. https://doi.org/10.1109/ICIS.2016.7550796
14. Tone mapping operators: progressing towards semantic-awareness / A. Goswami [et al.] // IEEE Intern. Conf. on Multimedia & Expo Workshops (ICMEW). – London, UK, 2020. – P. 1–6. https://doi.org/10.1109/ICMEW46912.2020.9106057
15. Lee, J. W. Local tone mapping using K-means algorithm and automatic gamma setting / J. W. Lee, R. Park, S. Chang // IEEE Intern. Conf. on Consumer Electronics (ICCE). – Las Vegas, NV, USA, 2011. – P. 807–808. https://doi.org/10.1109/ICCE.2011.5722876
16. Guangjun, Z. An improved tone mapping algorithm for High Dynamic Range images / Z. Guangjun, L. Yan // Intern. Conf. on Computer Application and System Modeling (ICCASM 2010). – Taiyuan, 2010. – P. V2-466–V2-468. https://doi.org/10.1109/ICCASM.2010.5620562
17. Banic, N. Puma: A high-quality retinex-based tone mapping operator / N. Banic, S. Loncaric // 24th European Signal Processing Conf. (EUSIPCO). – Budapest, Hungary, 2016. – P. 943–947. https://doi.org/10.1109/EUSIPCO.2016.7760387
18. Adversarial and adaptive tone mapping operator for high dynamic range images / X. Cao [et al.] // IEEE Symp. Series on Computational Intelligence (SSCI). – Canberra, Australia, 2020. – P. 1814–1821. https://doi.org/10.1109/SSCI47803.2020.9308535
19. Kumar, N. A. M. Real-time implementation of a novel detail enhancement algorithm for thermal imager / N. A. M. Kumar, B. S. Ravishankar, C. R. Patil // IEEE Uttar Pradesh Section Intern. Conf. on Electrical, Computer and Electronics Engineering (UPCON). – Varanasi, India, 2016. – P. 1–6. https://doi.org/10.1109/UPCON.2016.7894614
20. Peng, Y. Detail enhancement for infrared images based on propagated image filter / Y. Peng, Y. Yan, J. Zhao // Mathematical Problems in Engineering. – 2016. – Vol. 2016. – P. 1–12. https://doi.org/10.1155/2016/9410368
21. Display and detail enhancement for high-dynamic-range infrared images / C. Zuo [et al.] // Optical Engineering. – 2011. – Vol. 50(12). – P. 127401-1-10. https://doi.org/10.1117/1.3659698
22. Infrared image adaptive enhancement guided by energy of gradient transformation and multiscale image fusion / F. Chen [et al.] // Applied Sciences. – 2020. – Vol. 10. – P. 1–21. https://doi.org/10.3390/app10186262
23. Kim, T. K. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering / T. K. Kim, J. K. Paik, B. S. Kang // IEEE Transactions on Consumer Electronics. – 1998. – Vol. 44, no. 1. – P. 82–87. https://doi.org/10.1109/30.663733
24. Nithyananda, C. R. Review on histogram equalization based image enhancement techniques / C. R. Nithyananda, A. C. Ramachandra// Intern. Conf. on Electrical, Electronics, and Optimization Techniques (ICEEOT). – Chennai, 2016. – P. 2512–2517. https://doi.org/10.1109/ICEEOT.2016.7755145
25. Independence of luminance and contrast in natural scenes and in the early visual system / V. Mante [et al.] // Nature Neuroscience. – 2005. – Vol. 8. – P. 1690–1697. https://doi.org/10.1038/nn1556
26. Wang, Z. Multiscale structural similarity for image quality assessment / Z. Wang, E. P. Simoncelli, A. C. Bovik // The Thrity-Seventh Asilomar Conf. on Signals, Systems & Computers. – Pacific Grove, CA, USA, 2003. – Vol. 2. – P. 1398–1402. https://doi.org/10.1109/ACSSC.2003.1292216
27. Yeganeh, H. Objective quality assessment of tone-mapped images / H. Yeganeh, Z. Wang // IEEE Transactions on Image Processing. – 2013. – Vol. 22, no. 2. – P. 657–667. https://doi.org/10.1109/TIP.2012.2221725