@article{Карпенко А. Д.2023-09-29, author = { Карпенко А. Д., Войтко Т. Д., Тузиков А. В., Андрианов А. М.}, title = {Генеративная нейронная сеть на основе модели гетероэнкодера для de novo дизайна потенциальных противоопухолевых препаратов: применение к Bcr-Abl тирозинкиназе}, year = {2023}, doi = {10.37661/1816-0301-2023-20-3-7-20}, publisher = {NP «NEICON»}, abstract = {Цели. Решается задача разработки генеративной модели гетероэнкодера для компьютерного дизайна потенциальных ингибиторов Bcr-Abl тирозинкиназы - фермента, активность которого является патофизиологической причиной хронического миелоидного лейкоза.Методы. На основе рекуррентных и полносвязных нейронных сетей прямого распространения создана генеративная модель гетероэнкодера. Проведены обучение и тестирование этой модели на наборе химических соединений, которые содержат 2-ариламинопиримид, присутствующий в качестве основного фармакофора в структурах многих низкомолекулярных ингибиторов протеинкиназ.Результаты. Разработанная нейронная сеть апробирована в процессе генерации широкого набора новых молекул и последующего анализа их химического сродства к Bcr-Abl тирозинкиназе методами молекулярного докинга.Заключение. Показано, что разработанная нейронная сеть представляет собой перспективную математическую модель для de novo дизайна малых молекул, которые потенциально активны против Bcr-Abl тирозинкиназы и могут быть использованы для разработки эффективных противоопухолевых препаратов широкого спектра действия.}, URL = {https://www.academjournals.by/publication/18217}, eprint = {https://www.academjournals.by/files/18170}, journal = {Информатика}, }