1. Pappu, R. Physical One-Way Functions: PhD Thesis in Media Arts and Sciences / R. Pappu. – Cambridge : Massachusetts Institute of Technology, 2001. – 154 p.
2. Silicon physical random functions / B. Gassend [et al.] // Proc. of 9th Computer and Communications Security Conf. (CCS’02), Washington, DC USA, 18–22 Nov. 2002. – Washington, 2002. – P. 148–160.
3. Tuyls, P. Security with Noisy Data: On Private Biometrics, Secure Key Storage and Anti-Counterfeiting / P. Tuyls, B. Skoric, T. Kevenaar ; ed.: P. Tuyls. – N. Y. : Springer, 2007. – 339 p.
4. Rührmair, U. Strong PUFs: models, constructions, and security proofs / U. Rührmair, H. Busch, S. Katzenbeisser // Towards Hardware-Intrinsic Security / eds.: A.-R. Sadeghi, D. Naccache. – Berlin, Heidelberg : Springer, 2010. – P. 79–96.
5. Skoric, B. Robust key extraction from physical uncloneable functions / B. Skoric, P. Tuyls, W. Ophey // Proc. of Intern. Conf. Applied Cryptography and Network Security, N. Y., USA, 7–10 June 2005. – N. Y., 2005. – P. 407–422.
6. A technique to build a secret key in integrated circuits for identification and authentication applications / J. W. Lee [et al.] // Proc. of Intern. Symp. VLSI Circuits (VLSI’04), Honolulu, Hawaii, USA, 7–19 June 2004. – Honolulu, 2004. – P. 176–179.
7. Extracting secret keys from integrated circuits / D. Lim [et al.] // IEEE Transactions on Very Large Scale Integration (VLSI) Systems. – 2005. – Vol. 13, no. 10. – P. 1200–1205.
8. Maes, R. PUFKY: A fully functional PUF-based cryptographic key generator / R. Maes, A. van Herrewege, I. Verbauwhede // Proc. of 14th Intern. Workshop on Cryptographic Hardware and Embedded Systems (CHES 2012), Leuven, Belgium, 9–12 Sept. 2012. – Leuven, 2012. – P. 302–319.
9. Ярмолик, В. Н. Физически неклонируемые функции / В. Н. Ярмолик, Ю. Г. Вашинко // Информатика. – 2011. – № 2(30). – С. 92–103.
10. Иванюк, А. А. Физическая криптография и защита цифровых устройств / А. А. Иванюк, С. С. Заливако // Доклады БГУИР. – 2019. – № 2(120). – С. 50–58.
11. Программная реализация физически неклонируемых функций / Г. А. Мартвель [и др.] // Труды МФТИ. – 2020. – Т. 12, № 2. – C. 55–63.
12. Rührmair, U. On the foundations of Physical Unclonable Functions / U. Rührmair, J. Sölter, F. Sehnke // IACR Cryptology ePrint Archive. – 2009. – Vol. 2009. – 20 p.
13. Delvaux, J. Side channel modeling attacks on 65nm arbiter PUFs exploiting CMOS device noise / J. Delvaux, I. Verbauwhede // Proc. of IEEE Intern. Symp. on Hardware-Oriented Security and Trust (HOST), Austin, TX, USA, 2–3 June 2013. – Austin, 2013. – P. 137–142.
14. PUF modeling attacks on simulated and silicon data / U. Rührmair [et al.] // IEEE Transactions on Information Forensics and Security. – 2013. – Vol. 11, no. 8. – P. 1876–1891.
15. Xu, X. Using statistical models to improve the reliability of delay-based PUFs / X. Xu, W. Burleson, D. E. Holcomb // Proc. of IEEE Computer Society Annual Symp. on VLSI, Pittsburgh, PA, USA, 11–13 July 2016. – Pittsburgh, 2016. – P. 547–552.
16. Agarwal, A. Statistical timing analysis for intra-die process variations with spatial correlations / A. Agarwal, D. Blaauw, V. Zolotov // Proc. of Intern. Conf. on Computer Aided Design (ICCAD03), San Jose, CA, USA, 9–13 Nov. 2003. – San Jose, 2003. – P. 900–907.
17. Клыбик, В. П. Метод увеличения стабильности физически неклонируемой функции типа «арбитр» / В. П. Клыбик, С. С. Заливако, А. А. Иванюк // Информатика. – 2017. − № 1(53). – С. 31–43.
18. Ярмолик, В. Н. Физически неклонируемые функции с управляемой задержкой распространения сигналов / В. Н. Ярмолик, А. А. Иванюк, Н. Н. Шинкевич // Информатика. – 2022. − Т. 19, № 1. – С. 32–49.
19. Morozov, S. An analysis of delay based PUF implementations on FPGA / S. Morozov, A. Maiti, P. Schaumont // Proc. of Intern. Symp. on Applied Reconfigurable Computing: Tools and Applications (ARC 2010), Los Angeles, CA, US, 25–27 Mar. 2010. – Los Angeles, 2010. – P. 382–387.
20. FPGA implementation of a cryptographically-secure PUF based on learning parity with noise / C. Jin [et al.] // Cryptography. – 2017. – Vol. 23, no. 1. – P. 1–20.
21. Gu, C. Improved reliability of FPGA-based PUF identification generator design / C. Gu, N. Hanley, M. O’neil // ACM Transactions on Reconfigurable Technology and Systems. – 2017. – Vol. 10, no. 3. – P. 1–23.
22. Kumar, A. METAPUF a challenge response pair generator / A. Kumar, S. L. Tripathi, R. Mishra // Periodicals of Engineering and Natural Sciences (PEN) . – 2018. – Vol. 2, no. 6. – P. 58–63.
23. Ozturk, E. Physical unclonable function with tristate buffers / E. Ozturk, G. Hammouri, B. Sunar // Proc. of IEEE Intern. Symp. on Circuits and Systems (ISCAS 2008), Seattle, Washington, USA, 18–21 May 2008. – Seattle, 2008. – P. 3194–3197.
24. Böhm, C. Physical Unclonable Functions in Theory and Practice / C. Böhm, M. Hofer. – N. Y. : Springer Science + Business Media, 2013. – 270 p.
25. Ярмолик, В. Н. Физически неклонируемые функции типа арбитр с заведомо асимметричными парами путей / В. Н. Ярмолик, А. А. Иванюк // Доклады БГУИР. – 2022. – Т. 20, № 4. – С. 71–79.
26. A new Arbiter PUF for enhancing unpredictability on FPGA / T. Machida [et al.] // The Scientific World Journal. – 2015. – Vol. 2015, art. ID 864812. – 13 p.
27. Zhou, C. Secure and reliable XOR arbiter PUF design: An experimental study based on 1 trillion challenge response pair measurements / C. Zhou, K. K. Parhi, C. H. Kim // Proc. of 54th ACM/EDAC/IEEE Design Automation Conf. (DAC 2017), Austin, TX, USA, 18–22 June 2017. – Austin, 2017. – P. 1–6.
28. Maiti, A. A systematic method to evaluate and compare the performance of Physical Unclonable Functions / A. Maiti, V. Gunreddy, P. Schaumont ; eds.: P. Athanas, D. Pnevmatikatos, N. Sklavos // Embedded Systems Design with FPGAs. – N. Y., Springer, 2013. – P. 245–267.