1. ImageNet: A large-scale hierarchical image database / J. Deng [et al.] // 2009 IEEE Conf. on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. – Miami, 2009. – P. 248–255. https://doi.org/10.1109/CVPR.2009.5206848
2. Unsupervised pre-training for person re-identification / D. Fu [et al.] // 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. – Nashville, 2021. – P. 14745–14754. https://doi.org/10.1109/CVPR46437.2021.01451
3. Богатырева, А. А. Исследование способности к transfer learning сверточных нейронных сетей, обученных на ImageNet / А. А. Богатырева, А. Р. Виноградова, С. А. Тихомирова // Междунар. журнал прикладных и фундаментальных исследований. – 2019. – № 7. – С. 106–111.
4. Конарев, Д. И. Повышение точности предварительно обученных нейронных сетей путем тонкой настройки / Д. И. Конарев, А. А. Гуламов // Материалы конф. «Информационные технологии в управлении», Санкт-Петербург, 6–8 окт. 2020 г. – СПб., 2020. – С. 200–212.
5. DeVries, T. Improved Regularization of Convolutional Neural Networks with CutOut / T. DeVries, G. W. Taylor. – 2017. – Mode of access: https://doi.org/10.48550/arXiv.1708.04552. – Date of access: 09.08.2022.
6. Dropout: A simple way to prevent neural networks from overfitting / N. Srivastava [et al.] // J. of Machine Learning Research. – 2014. – No. 15. – P. 1929–1958. https://doi.org/10.5555/2627435.2670313
7. Choice of activation function in convolution neural network for person re-identification in video surveillance systems / H. Chen [et al.] // Programming and Computer Software. – 2022. – Vol. 48, no. 5. – P. 312–321. http://doi.org/10.1134/S0361768822050036
8. Random Erasing Data Augmentation / Z. Zhong [et al.]. – 2020. – Mode of access: https://doi.org/10.1609/AAAI.V34I07.7000. – Date of access: 09.08.2022.
9. CutMix: Regularization strategy to train strong classifiers with localizable features / S. Yun [et al.] // 2019 IEEE/CVF Intern. Conf. on Computer Vision (ICCV), Seoul, Korea (South), 27 Oct. – 2 Nov. 2019. – Seoul, 2019. – P. 6022–6031. https://doi.org/10.1109/ICCV.2019.00612
10. Cut-thumbnail: A novel data augmentation for convolutional neural network / T. Xie [et al.] // Proc. of the 29th ACM Intern. Conf. on Multimedia, Virtual Event, China, 20–24 Oct. 2021. – Virtual Event, China, 2021. – Р. 1627–1635. https://doi.org/10.1145/3474085.3475302
11. Mixup: Beyond Empirical Risk Minimization / H. Zhang [et al.]. – 2018. – Mode of access: https://doi.org/10.48550/arXiv.1710.09412. – Date of access: 09.08.2022.
12. ImageNet-Trained CNNs are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness / R. Geirhos [et al.]. – 2019. – Mode of access: https://doi.org/10.48550/arXiv.1811.12231. – Date of access: 09.08.2022.
13. Gong, Y. An Effective Data Augmentation for Person Re-identification / Y. Gong, Z. Zeng. – 2021. – Mode of access: https://doi.org/10.48550/arXiv.2101.08533. – Date of access: 09.08.2022.
14. Adversarially occluded samples for person re-identification / H. Huang [et al.] // 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. – Salt Lake City, 2018. – P. 5098–5107. https://doi.org/10.1109/CVPR.2018.00535
15. Deep learning for person re-identification: A survey and outlook / M. Ye [et al.] // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2021. – Vol. 44, iss. 6. – Р. 2872–2893. https://doi.org/10.1109/TPAMI.2021.3054775
16. Deep residual learning for image recognition / K. He [et al.] // 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. – Las Vegas, 2016. – P. 770–778. https://doi.org/10.1109/cvpr.2016.90
17. Huang, G. Densely connected convolutional networks / G. Huang, Z. Liu, K. Q. Weinberger // 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. – Honolulu, 2017. – P. 2261–2269. https://doi.org/10.1109/CVPR.2017.243
18. Scalable person re-identification: A benchmark / L. Zheng [et al.] // 2015 IEEE Intern. Conf. on Computer Vision (ICCV), Santiago, Chile, 7–13 Dec. 2015. – Santiago, 2015. – P. 1116–1124. https://doi.org/10.1109/ICCV.2015.133
19. Performance Measures and a Data Set for Multi-target, Multi-camera Tracking / E. Ristani [et al.]. – 2016. – Mode of access: https://doi.org/10.1007/978-3-319-48881-3_2. – Date of access: 09.08.2022.
20. Person transfer GAN to bridge domain gap for person re-identification / L. Wei [et al.] // 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. – Salt Lake City, 2018. – P. 79–88. https://doi.org/10.1109/CVPR.2018.00016