КЛАССИФИКАТОР ДЛЯ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЙ НА КУРИНЫХ ТУШКАХ В ГИПЕРСПЕКТРАЛЬНЫХ ИЗОБРАЖЕНИЯХ, ОСНОВАННЫЙ НА АЛГОРИТМЕ ПОСЛЕДОВАТЕЛЬНЫХ ПРОЕКЦИЙ И ЛИНЕЙНОЙ МНОГОФАКТОРНОЙ РЕГРЕССИИ

Wu W. ., Chen G. Y., Kang R. ., Xia J. C., Huang Y. P., Chen K. J.
2017

Разработан классификатор для автоматического обнаружения загрязняющих веществ на куриных тушках, основанный на алгоритме последовательных проекций (АПП) и многомерной линейной регрессии (МЛР) и использующий пороговое значение оптимальной производительности. Гиперспектральные изображения для калибровки и проверки получены с помощью гиперспектральных систем визуализации. Регрессионная модель классификатора создана на основе 12 характерных длин волн (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670 и 689 нм), выбранных с помощью АПП. Оптимальный порог Т = 1 получен из анализа рабочей характеристики приемника. Классификатор АПП-МЛР показывает лучшие результаты в обнаружении загрязнений по сравнению с классификатором, основанным на АПП и частичной регрессии с использованием метода наименьших квадратов, и с классификатором на основе векторной машины, использующей метод наименьших квадратов. Количество истинно положительных решений, приближающееся к 100%, при ложных срабатываниях (0.392%) указывает на то, что классификатор АПП-МЛР может использоваться для эффективного обнаружения загрязняющих веществ на куриных тушках.

Wu W. ., Chen G. Y., Kang R. ., Xia J. C., Huang Y. P., Chen K. J. КЛАССИФИКАТОР ДЛЯ ОБНАРУЖЕНИЯ ЗАГРЯЗНЕНИЙ НА КУРИНЫХ ТУШКАХ В ГИПЕРСПЕКТРАЛЬНЫХ ИЗОБРАЖЕНИЯХ, ОСНОВАННЫЙ НА АЛГОРИТМЕ ПОСЛЕДОВАТЕЛЬНЫХ ПРОЕКЦИЙ И ЛИНЕЙНОЙ МНОГОФАКТОРНОЙ РЕГРЕССИИ. Журнал прикладной спектроскопии. 2017;84(3):510(1)-510(7).
Цитирование

Список литературы

Источник