Спектроскопический анализ водного раствора метиленового синего в видимом диапазоне
Получена универсальная калибровочная кривая для определения концентрации полимеризуемых красителей в растворах в УФ-видимом диапазоне методом спектрофотометрии. Метод успешно применен для водных растворов метиленового синего в широком диапазоне концентраций метиленового синего и добавки NaCl независимо от распределения суммарной концентрации и температуры. Показано, что молярные доли каждого вида метиленового синего в растворе могут быть хорошо аппроксимированы с помощью простых алгебраических выражений для соотношения A650/A607.
1. R. Croce, F. Cinà, A. Lombardo, G. Crispeyn, C. I. Cappelli, M. Vian, et al., Ecotoxicol. Environ. Saf., 144, 79–87 (2017), doi: 10.1016/j.ecoenv.2017.05.046.
2. E. Forgacs, T. Cserháti, G. Oros, Environ. Int., 30, No. 7, 953–971 (2004), doi: 10.1016/j.envint.2004.02.001.
3. A. Fernández-Pérez, G. Marbán, ACS Omega, 5, N 46, 29801–29815 (2020), acsomega.0c03830.
4. N. F. Rosa, O. C. Monteiro, M. F. Camões, R. J. N. B. da Silva, Acc.. Qual. Assur., 22, No. 4, 217–226 (2017), doi: 10.1007/s00769-017-1272-x.
5. G. Marbán, T. T. Vu, T. Valdés-Solís, Appl. Catal. A Gen., 402, 1–2 (2011), doi: 10.1016/j.apcata.2011.06.009.
6. R. Nosrati, A. Olad, S. Shakoori, Mater. Sci. Eng. C, 80, 642–651 (2017), doi: 10.1016/j.msec.2017.07.004.
7. H. Masoumbeigi, A. Rezaee, Heal. Policy Sustain. Heal., 2, 160–166 (2015).
8. A. B. Saleh, M. Abudabbus, World Acad. Sci. Eng. Technol. Int. Sch. Sci. Res. Innov., 7, 6–22 (2013).
9. D. Malik, C. Jain, A. Yadav, R. Kothari, V. Pathak, IRJET, 3, No. 7, 864–880 (2016).
10. M. Hossain, M. Ali, T. Islam, Int. Lett. Chem. Phys. Astron., 77, 26–34 (2018), doi: 10.18052/www.scipress.com/ILCPA.77.26.
11. E. Rabinowitch, L. F. Epstein., J. Am. Chem. Soc., 63, No. 1, 69–78 (1941), doi: 10.1021/ja01846a011.
12. G. N. Lewis, O. Goldschmid, T. T. Magel, J. Bigeleisen, J. Am. Chem. Soc., 65, No. 6, 1150–1154 (1943), doi: 10.1021/ja01246a037.
13. D. R. Lemin, T. Vickerstaff, Trans. Faraday Soc., 43, 491–502 (1947), doi: 10.1039/TF9474300491.
14. K. Ghosh Ashish, Z. Phys. Chem., 94, No. 4-6, 161 (1975), doi: 10.1524/zpch.1975.94.4-6.161.
15. K. Bergmann, C. T. O’Konski, J. Phys. Chem. Am. Chem. Soc., 67, No. 10, 2169–2177 (1963), doi: 10.1021/j100804a048.
16. H. Dunken, D. Schmidt, K. Palm, Z. Chem., 2, No. 11, 349 (1962), doi: 10.1002/zfch.19620021121.
17. W. Spencer, J. R. Sutter, J. Phys. Chem. Am. Chem. Soc., 83, No. 12, 1573–1576 (1979), doi: 10.1021/j100475a004.
18. O. Yazdani, M. Irandoust, J. B. Ghasemi, S. Hooshmand, Dye Pigment, 92, No. 3, 1031–1041 (2012), doi: 10.1016/j.dyepig.2011.07.006.
19. J. B. Ghasemi, M. Miladi, J. Chinese Chem., 56, No. 3, 459–468 (2009), doi: 10.1002/jccs.200900069.
20. P. J. Hillson, R. B. McKay, Trans. Faraday Soc,, 61, 374–382 (1965), doi: 10.1039/TF9656100374.
21. K. Patil, R. Pawar, P. Talap, Phys. Chem. Chem. Phys., 2, No. 19, 4313–4317 (2000).
22. D. Heger, J. Jirkovsk, P. Kln, J. Phys. Chem., 109, No. 30, 6702–6709 (2005), doi: 10.1021/jp050439j.
23. E. Braswell, J. Phys. Chem. Am. Chem. Soc., 72, No. 7, 2477–2483 (1968), doi: 10.1021/j100853a035.
24. Z. Zhao, E. R. Malinowski, Appl. Spectrosc., 53, No. 12, 1567–1574 (1999), doi: 10.1366/0003702991946028.
25. G. Scheibe, Kolloid-Zeitschrift., 82, No. 1, 1–14 (1938), doi: 10.1007/BF01509409.
26. A. K. Ghosh, P. Mukerjee, J. Am. Chem. Soc., 92, No. 22, 6408–6412 (1970), doi: 10.1021/ja00725a003.
27. Z. Klika, P. Čapková, P. Horáková, M. Valášková, P. Malý, R. Macháň, et al., J. Colloid Interface Sci., 311, No. 1, 14–23 (2007), doi: 10.1016/j.jcis.2007.02.034.
28. Z. Klika, Sborník Vědeckých Pr. VŠB-TUOstrava, 2, 53 (1979).
29. Z. Zhao, E. R. Malinowski, J. Chemom., 13, No. 2, 83–94 (1999), doi: 10.1002/(SICI)1099-128X(199903/04)13:23.0.CO;2-2.
30. B. Hemmateenejad, G. Absalan, M. Hasanpour, J. Iran. Chem. Soc., 8, No. 1, 166–175 (2011), doi: 10.1007/bf03246213.
31. A. Fernández-Pérez, T. Valdés-Solís, G. Marbán, Dye Pigment, 161, 448–456 (2019).
32. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Sci. Rep., 5 (2015).
33. G. M. R. Kpinsoton, H. Karoui, Y. Richardson, B. N. S. Koffi, H. Yacouba, J. Motuzas, et al., React. Kinet. Mech. Catal. (2018), doi: 10.1007/s11144-018-1406-0.
34. L. Wolski, M. Ziolek, Appl. Catal. B Environ., 224, 634–647 (2018), doi: 10.1016/j.apcatb.2017.11.008.
35. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. M. Herrmann, Appl. Catal. B Environ., 31, No. 2, 145–157 (2001), doi: 10.1016/S0926-3373(00)00276-9.
36. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, et al., Appl. Catal. B Environ., 39, No. 1, 75–90 (2002), doi: 10.1016/S0926-3373(02)00078-4.
37. R. S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik (Stuttg), 127, No. 18, 7143–7154 (2016), doi: 10.1016/j.ijleo.2016.04.026.
38. C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, et al., Thin Solid Films, 516, No. 17, 5881–5884 (2008), doi: 10.1016/j.tsf.2007.10.050.
39. J. H. Potgieter, J. Chem. Educ., 68, No. 4, 349 (1991), doi: 10.1021/ed068p349.
40. M. R. Bayati, F. Golestani-Fard, A. Z. Moshfegh, Appl. Catal. A Gen., 382, No. 2, 322–331 (2010), doi: 10.1016/j.apcata.2010.05.017.
41. N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, et al., Sol. Energy, 97, 147–154 (2013), doi: 10.1016/j.solener.2013.08.023.
42. R. J. N. Bettencourt da Silva, Talanta, 148, 177–190 (2016), doi: 10.1016/j.talanta.2015.10.072.