Wang P. , Wang Y. , Sun Y. , Cao Z. , Zhu W. , Wang H. Исследование термоокислительной стабильности смазочных материалов и их спектроскопический анализ. Журнал прикладной спектроскопии. 2021;88(4):662-669.
1. L. R. Rudnick, Lubricant Additives Chemistry and Applications, 2nd ed., Taylor & Francis Group (2009).
2. J. M. Herdan, Lubric. Sci., 9, No. 2, 161–172 (1997).
3. X. Maleville, D. Faure, A. Legros, J. C. Hipeaux, Lubric. Sci., 9, No. 1, 3–60 (1996).
4. M. A. Keller, C. S. Saba, Anal. Chem., 68, 3489–3492 (1996).
5. K. U. Ingold, D. A. Pratt, Chem. Rev., 114, No. 18, 9022–9046 (2014).
6. A. Adhvaryu, S. Z. Erhan, I. D. Singh, Lubric. Sci., 14, No. 2, 119–129 (2002).
7. V. J. Gatto, W. E. Moehle, T. W. Cobb, E. R. Schneller, J. Synth. Lubric., 24, No. 2, 111–124 (2007).
8. G. Kreisberger, C. W. Klampfl, W. W. Buchberger, Energy Fuels, 30, No. 9, 7638–7645 (2016).
9. A. Mustafa, J. J. Verendel, C. Turner, P. Wiklund, Ind. Eng. Chem. Res., 53, No. 49, 19028–19033 (2014).
10. M. Bernabei, G. B. R. Seclı, J. Microcolumn Sep., 12, No. 11, 585–592 (2000).
11. Y. Jin, H. Duan, L. Wei, B. Cheng, S. Chen, S. Zhan, J. Li, Lubric. Sci., 31, No. 6, 252–261 (2019).
12. I. Ahmad, J. Ullah, M. Ishaq, H. Khan, R. Khan, W. Ahmad, K. Gul, Energy Fuels, 31, No. 7, 7653–7661 (2017).
13. M. del Nogal Sanchez, P. Glanzer, J. L. Perez Pavon, C. Garcia Pinto, B. Moreno Cordero, Anal. Bioanal. Chem., 398, No. 7-8, 3215–3224 (2010).
14. X. Qian, Y. Xiang, H. Shang, B. Cheng, S. Zhan, J. Li, Friction, 4, No. 1, 29–38 (2016).
15. C. Miao, D. Yu, L. Huang, S. Zhang, L. Yu, P. Zhang, Ind. Eng. Chem. Res., 55, No. 7, 1819–1826 (2016).
16. L. Huang, C. Zhou, Y. Zhang, S. Zhang, P. Zhang, Langmuir: the ACS J. Surfaces and Colloids, 35, No. 12, 4342–4352 (2019).
17. M. Frauscher, A. Agocs, C. Besser, A. Rögner, G. Allmaier, N. Dörr, Energy Fuels, 34, No. 3, 2674–2682 (2020).
18. S. Yu, J. Feng, T. Cai, S. Liu, Ind. Eng. Chem. Res., 56, No. 14, 4196–4204 (2017).
19. A. Singh, R.T. Gandra, E.W. Schneider, S. K. Biswas, J. Phys. Chem. C, 117, No. 4, 1735–1747 (2013).
20. J. Feng, H. Zhao, S. Yue, S. Liu, ACS Sustain. Chem. Eng., 5, No. 4, 3399–3408 (2017).
21. M. A. D.S.Rios, S.N.Santiago, A. A.L. S.Lopes, S.E.Mazzetto,Energy Fuels, 24, No. 5, 3285–3291 (2010).
22. J. Barret, P. Gijsman, J. Swagten, R. F. M. Lange, Polym. Degrad. Stab., 76, 441–448 (2002).
23. F. Bär, H. Hopf, M. Knorr, J. Krahl, Fuel, 215, 249–257 (2018).
24. R. P. Caramit, A. G. de Freitas Andrade, J. B. Gomes de Souza, T. A. de Araujo, L. H. Viana, M. A. G. Trindade, V. S. Ferreira, Fuel, 105, 306–313 (2013).
25. J.Chýlková, O.Machalický, M.Tomášková, R. Šelešovská, T. Navrátil,Anal. Lett., 49, No. 1, 92–106 (2015).
26. S. Kerkering, W. Koch, J. T. Andersson, Energy Fuels, 29, No.2, 793–799 (2015).
27. E. V. Frantsina, A. A. Grinko, N. I. Krivtsova, M. V. Maylin, A. A. Sycheva, Pet. Sci. Technol., 38, No. 4, 338–344 (2019).
28. J. C. O. Santos, I. M. G. d. Santos, A. G. Souza, E. V. Sobrinho, V. J. Fernandes, A. J. N. Silva, Fuel, 83, No. 17-18, 2393–2399 (2004).
29. M. Chao, W. Li, X. Wang, Thermochim. Acta, 591, 16–21 (2014).
30. D. Li, W. Fang, Y. Xing, Y. Guo, R. Lin, Fuel, 87, No. 15-16, 3286–3291 (2008).
31. G. Geethanjali, K. V. Padmaja, R. B. N. Prasad, Ind. Eng. Chem. Res., 55, No. 34, 9109–9117 (2016).
32. Y. Gong, L. Guan, X. Feng, J. Zhou, X. Xu, L. Wang, Energy Fuels, 31, 2501–2512 (2017).
33. J. Ma, Y. Fei, N. Wu, S. Sun, Y. Wang, Asia–Pac. J. Chem. Eng., 14, No. 1, 2273–2289 (2018).
34. R. e. L. Webster, D. J. Evans, P. J. Marriott, Energy Fuels, 29, 2059–2066 (2015).
35. M. Antolovich, D. R. B. Jr, A. G. Bishop, D. Jardine, P. D. Prenzler, K. Robards, J. Agric. Food Chem., 52, 962–971 (2004).
36. D.W. Johnson, Applications of Mass Spectrometric Techniques to the Analysis of Fuels and Lubricants, IntechOpen Groups (2017).
37. T. N. Loegel, R. E. Morris, K. M. Myers, C. J. Katilie, Energy Fuels, 28, No. 10, 6267–6274 (2014).