@article{Wan M. 2022-12-02, author = { Wan M. , Jin X. , Han Y. , Wang L. , Li S. , Rao Y. , Zhang X. , Gao Q. }, title = {Ансамблевый метод обучения на основе суммирования для прогнозирования доступного азота в почве с помощью портативного микроспектрометра ближнего инфракрасного диапазона}, year = {2022}, publisher = {NP «NEICON»}, abstract = {Для разработки надежной и точной модели доступного в почве азота используются спектроскопия в ближнем ИК-диапазоне (БИК) почвы и данные об азоте. Спектральная отражательная способность образцов почвы изучена в диапазоне 900—1700 нм с помощью девяти методов предварительной обработки с использованием портативного микроБИК-спектрометра. Экстремальное повышение градиента (XGBoost), категориальное повышение (CatBoost), машина повышения градиента света (LightGBM) и случайный лес, которые представляют собой древовидные алгоритмы, сложены в виде базовых моделей. Линейная регрессия используется в метамодели для определения уникального шаблона обучения базовой модели. Результаты показывают, что диапазон и характеристики спектров можно использовать для соответствующих прогнозов, а спектры микро-БИК меняются при различных предварительных обработках. Многослойная модель обеспечивает наилучшую производительность среди всех протестированных моделей. Коэффициент детерминации R2 = 0.942, относительная процентная разница RPD = 4.192 с коррекцией Савицкого–Голея и мультипликативным рассеянием. }, URL = {https://www.academjournals.by/publication/15624}, eprint = {https://www.academjournals.by/files/15580}, journal = {Журнал прикладной спектроскопии}, }