Определение вилдаглиптина с помощью простого и чувствительного флуоресцентного зонда
Вилдаглиптин (VLG), препарат для лечения диабета второго типа, не флуоресцирует в водном растворе, что затрудняет его определение прямыми флуориметрическими методами. Предложен конкурентный метод флуориметрического обнаружения VLG с использованием CB[7]–BER (кукурбит[7]урил = CB[7], BER = берберин) в качестве флуоресцентного зонда. Показана хорошая корреляция метода в диапазоне концентраций 0.00213–1.820 мкг/мл с коэффициентом r2 > 0.999. Для флуоресцентного зонда CB[7]–BER предел обнаружения 0.64 нг/мл. Метод успешно применен для определения VLG в фармацевтических препаратах и синтетической урине.
1. E. I. El-Kimary, D. A. Hamdy, S. S. Mourad, M. A. Barary, J. Chromatogr. Sci., 54, No. 1, 79–87 (2015).
2. S. Mowaka, D. Mohamed, RSC Adv., 74, No. 5, 60467–60481 (2015).
3. S. Shantikumar, N. Satheeshkumar, B. Prasanth, A. Lingesh, D. Paul, R. Srinivas, Anal. Methods, 7, No. 15, 6198–6206 (2015).
4. M. Attimarad, S. H. Nagaraja, B. E. Aldhubaib, A. Nair, Diabetes, 1, 4 (2014).
5. A. T. Barden, B. Salamon, E. E. S. Schapoval, M. Steppe, J. Chromatogr. Sci., 50, No. 5, 426–432 (2012).
6. T. Boovizhikannan, V. K. Palanirajan, J. Pharm. Res., 7, No. 1, 113–116 (2013).
7. R. Pontarolo, A. C. Gimenez, T. M. G. de Francisco, R. P. Ribeiro, F. L. D. Pontes, J. C. Gasparetto, J. Chromatogr. B, 965, 133–141 (2014).
8. A. T. Barden, B. L. Piccoli, N. M. Volpato, M. Steppe, Anal. Methods, 5, No. 20, 5701–5708 (2013).
9. M. Fadr, A. N. Amro, S. B. Aoun, Trop. J. Pharm. Res., 17, No. 9, 1847–1852 (2018).
10. M. M. Fachi, L. B. Cerqueira, L. P. Leonart, T. M. G. D. Francisco, R. Pontarolo, PloS One, 11, No. 12, e0167107 (2016).
11. S. Shantikumar, N. Satheeshkumar, B. Prasanth, A. Lingesh, D. Paul, R. Srinivas, Anal. Methods, 7, No. 15, 6198–6206 (2015).
12. A. Barden, B. Piccoli, N. Volpato, E. Schapoval, M. Steppe, Die Pharm. Int. J. Pharm. Sci., 69, No. 2, 86–91 (2014).
13. M. Fadr, A. N. Amro, S. B. Aoun, Trop. J. Pharm. Res., 17, No. 9, 1847–1852 (2018).
14. R. I. El Bagary, H. M. Azzazy, E. F. El Kady, F. Farouk, J. Liq, Chromatogr. Related Technol., 39, No. 4, 195–202 (2016).
15. O. V. D. Oliveira, G. D. C. Costa, L. T. Costa, J. Phys. Chem. B, 122, No. 50, 12107–12113 (2018).
16. S. R. Wang, J. Q. Wang, G. H. Xu, L. Wei, B. S. Fu, L. Y. Wu, Y. Y. Song, X. R. Yang, C. Li, S. M. Liu, Adv. Sci., 5, No. 7, 1800231 (2018).
17. S. Li, I. W. Wyman, C. Wang, Y. Wang, D. H. Macartney, R. Wang, J. Org. Chem., 81, No. 19, 9494–9498 (2016).
18. M. Gupta, K. Parvathi, S. Mula, D. K. Maity, A. K. Ray, Photochem. Photobiol. Sci., 16, No. 4, 499–506 (2017).
19. Z. Huang, H. Zhang, H. Bai, Y. Bai, S. Wang, X. Zhang, ACS Macro Lett., 5, No. 10, 1109–1113 (2016).
20. L. Scorsin, J. A. Roehrs, R. R. Campedelli, G. F. Caramori, A. O. Ortolan, R. L. Parreira, H. D. Fiedler, A. Acuna, L. Garcia-Rio, F. Nome, ACS Catalysis, 8, No. 12, 12067–12079 (2018).
21. M. A. Gamal-Eldin, D. H. Macartney, Org. Biomol. Chem., 11, No. 3, 488–495 (2013).
22. J. Robinson-Duggon, F. Perez-Mora, L. Valverde-Vasquez, D. Cortes-Arriagada, J. R. De la Fuente, G. Gunther, D. Fuentealba, J. Phys. Chem. C, 121, No. 39, 21782–21789 (2017).
23. P. Xu, Q. Feng, X. Yang, S. Liu, C. Xu, L. Huang, M. Chen, F. Liang, Y. Cheng, Bioconjugate Chem., 29, No. 8, 2855–2866 (2018).
24. H. S. El-Sheshtawy, S. Chatterjee, K. I. Assaf, M. N. Shinde, W. M. Nau, J. Mohanty, Sci. Rep., 8, No. 1, 1–10 (2018).
25. S. Senler, B. Cheng, A. E. Kaifer, Org. Lett., 16, No. 22, 5834–5837 (2014).
26. M. H. Tootoonchi, S. Yi, A. E. Kaifer, J. Am. Chem. Soc., 135, No. 29, 10804–10809 (2013).
27. G. Villarroel-Lecourt, J. Carrasco-Carvajal, F. Andrade-Villalobos, F. Solis-Egana, I. Merino-San Martín, J. Robinson-Duggon, D. Fuentealba, ACS Omega, 3, No. 7, 8337–8343 (2018).
28. Y. Li, C.-F. Li, L.-M. Du, J.-X. Feng, H.-L. Liu, Y.-L. Fu, Talanta, 132, 653–657 (2015).
29. H. Bai, H. Chen, R. Hu, M. Li, F. Lv, L. Liu, S. Wang, ACS Appl. Mater. Interfaces, 8, No. 46, 31550–31557 (2016).
30. C. Kim, S. S. Agasti, Z. Zhu, L. Isaacs, V. M. Rotello, Nature Chem., 2, No. 11, 962–966 (2010).
31. A. Palma, M. Artelsmair, G. Wu, X. Lu, S. J. Barrow, N. Uddin, E. Rosta, E. Masson, O. A. Scherman, Angew. Chemie, 129, No. 49, 15894–15898 (2017).
32. Q. Li, Y. Wu, H. Lu, X. Wu, S. Chen, N. Song, Y.-W. Yang, H. Gao, ACS Appl. Mater. Interfaces, 9, No. 11, 10180–10189 (2017).
33. S. Fu, S. Ni, D. Wang, M. Fu, T. Hong, Int. Immunopharm., 71, 1–6 (2019).
34. G.-Q. Wang, L. Guo, L.-M. Du, Y.-L. Fu, Microchem. J., 110, 285–291 (2013).
35. M. Al Bratty, H. A. Alhazmi, S. A. Javed, K. G. Lalitha, M. Asmari, J. Wölker, S. El Deeb, Chromatographia, 80, No. 6, 891–899 (2017).
36. E. Uçaktürk, J. Anal. Methods in Chem. (2015).
37. A. T. Barden, B. L. Piccoli, N. M. Volpato, M. Steppe, Anal. Methods, 5, No. 20, 5701–5708 (2013).
38. A. Kashid, D. Ghorpade, P. Toranmal, S. Dhawale, J. Anal. Chem., 70, No. 4, 510–515 (2015).
39. J. Kim, I.-S. Jung, S.-Y. Kim, E. Lee, J.-K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc., 122, No. 3, 540–541 (2000).
40. M. Megyesi, L. Biczók, I. Jablonkai, J. Phys. Chem. C, 112, No. 9, 3410–3416 (2008).
41. C. Li, J. Feng, H. Ju, Analyst, 140, No. 1, 230–235 (2015).
42. L. Shi, J.-H. Xie, L.-M. Du, Y.-X. Chang, H. Wu, Spectrochim. Acta A: Mol. Biomol. Spectr., 162, 98–104 (2016).