Yang S. , Ren L. , Qin Z. , Zhang P. , Zhang Q. , Zhang J. , Jiang L. Колориметрический метод детекции ракового маркера гена р53 без использования меток. Журнал прикладной спектроскопии. 2024;91(6):923.
1. V. Brázda, M. Fojta, Int. J. Mol. Sci., 20, No. 22, 5605 (2019), doi: 10.3390/ijms20225605.
2. R. Song, W. Zhang, H. Chen, Eur. J. Mass Spectrom., 12, No. 1, 205 (2006), doi: 10.1255/ejms.800.
3. Therese Sørlie, Mol. Toxic. Protocols, 207–216 (2005), doi:10.1385/1-59259-840-4:207.
4. X. Jin, D. Zhang, W. Zhang, Microchem. J., 168, 106461 (2021), doi: 10.1016/j.microc.2021.106461.
5. Z. Luo, Y. Xu, Z. Huang, Talanta: The Int. J. Pure and Appl. Analyt. Chem., 210, 120638 (2020), doi: 10.1016/j.talanta.120638.
6. E. Assah, W. Goh, X. T. Zheng, Colloids and Surfaces B: Biointerfaces, 214 (2018), doi: 10.1016/j.colsurfb.2018.05.007.
7. L Wang, Y. Han, S. Xiao, Talanta, S0039914018305022 (2018), doi: 10.1016/j.talanta.2018.05.035.
8. Z. F. Shen, F. Li, Y. F. Jiang, Analyt. Chem., 7b04895 (2018), doi: 10.1021/acs.analchem.7b04895.
9. L Ding, L Zhang, H. Yang, S. Ge, Sensors & Actuators, B268, 210–216 (2018), doi: 10.1016/j.snb.2018.04.126.
10. R. M. Dirks, N. A. Pierce, Proc. Nat. Acad. Sci., 101, No. 43 (2004), doi: 10.1073/pnas.0407024101.
11. M. Östblom, B. Liedberg, L. M. Demers, J. Phys. Chem. B, 109, No. 31, 15150–15160 (2005), doi: 10.1021/jp051617b.
12. P Liu, X Yang, S. Sun, Analyt. Chem., 85, No. 16, 7689–7695 (2013), doi: 10.1021/ac4001157.
13. J. Li, C. Kong, Q. Liu, Analyst, 143, No. 17, 4051–4056 (2018), doi:10.1039/C8AN00825F.
14. S. Lu, T. Hu, S. Wang, ACS Appl. Mater. Interfaces, 9, No. 1, 167–175 (2017), doi: 10.1021/acsami.6b13201.
15. S. E. Sadatá Ebrahimi, Chem. Commun., 19, 1398–1399 (1992), doi: 10.1002/chin.199303290.
16. D. K. Nguyen, C. H. Jang, Micromachines, 12, No. 12, 1526 (2021), doi: 10.3390/mi12121526.
17. M. Vanaja, S. Rajeshkumar, K. Paulkumar, Adv. Appl. Sci. Res., 4, 50–55 (2013), doi: 10.1039/c2cp41186e.
18. X. Xie, R. Ke, C. Cheng, Biosensors and Bioelectronics, 176, 112896 (2021), doi: 10.1016/j.bios.2020.112896.
19. S. Bi, S. Yue, S. Zhang, Chem. Soc. Rev., 46, No. 14, 4281–4298 (2017), doi: 10.1039/C7CS00055C.
20. K. L. M. Drew, T. R. Walsh, Australian J. Chem., 73, No. 10, 987–1000 (2020), doi: 10.1071/CH19533.
21. X. Zhang, M. R. Servos, J. Liu, J. Am. Chem. Soc., 134, No. 17, 7266 (2012), doi: 10.1021/ja3014055.
22. L. Sun, Z. Zhang, S. Wang, Nanoscale Res. Lett., 4, No. 3, 216–220 (2008), doi: 10.1007/s11671-0089228-z.
23. Y. Qi, J. Ma, X. Chen, Analyt. and Bioanalyt. Chem., 412, No. 2, 439–448 (2020), doi: 10.1007/s00216019-02253-8.
24. Z. Gao, Z. Qiu, M. Lu, Biosensors and Bioelectronics, 89, 1006–1012 (2017), doi: 10.1016/j.bios.2016.10.043.
25. C. Xu, Y. Ying, J. Ping, Microchim. Acta, 186, 1–7 (2019), doi: 10.1007/s00604-019-3574-7.
26. Y. Qin, H. Bubiajiaer, J. Yao, Biosensors, 12, No. 4, 242 (2022), doi: 10.3390/bios12040242.
27. X. Liu, F. He, F. Zhang, Analyt. Chem., 92, No. 13, 9370–9378 (2020), doi: 10.1021/acs.analchem.0c01773.
28. C. Xu, L. Lan, Y. Yao, Sensors and Actuators B: Chem., 273, 642–648 (2018), doi: 10.1016/j.snb.2018.06.035.
29. D. Yuan, X. Fang, Y. Liu, Analyst, 144, No. 12, 3886–3891 (2019), doi: 10.1039/C9AN00394K