Современные представления об остеогенном потенциале мезенхимальных стволовых клеток и создании биоинженерных конструкций для репарации костной ткани
В статье суммируются современные представления об остеогенном потенциале мезенхимальных стволовых клеток (МСК) и опыте применения различных носителей для восстановления костной ткани. Понимание реализации программы остеогенеза в МСК сможет существенно расширить возможности применения этих клеток в составе биоинженерных конструкций. На сегодняшний день накоплен большой объем экспериментальных данных по изучению механизма остеогенной дифференцировки МСК, индукторов трансформации МСК в предшественники остеогенеза и созданию эквивалентов костной ткани биоинженерным путем с применением различных носителей. Особое внимание уделяется разработке материалов носителей и их проектированию, методам получения конструкций и взаимодействиям между скэффолдом и клетками, так как это имеет большое значение для дальнейшего функционирования биоинженерной ткани.
1. Hanna, H. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties / H. Hanna, L. M Mir // Stem Cell Res. Ther. – 2018. – Vol. 9, N 1. – Art. 203. https://doi.org/10.1186/s13287-018-0942-x
2. Friedenstein, A. J. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells / A. J. Friedenstein, R. K. Chailakhjan // Cell Proliferation. – 1970. – Vol. 3, N 4. – P. 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
3. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues / A. J. Friedenstein [et al.] // Transplantation. – 1968. – Vol. 6, N 2. – P. 230–247.
4. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development / L. D. Quarles [et al.] // J. Bone Miner Res. – 1992. – Vol. 7, N 6. – P. 683–692. https://doi.org/10.1002/jbmr.5650070613
5. Камилов, Ф. Х. Клеточно-молекулярные механизмы ремоделирования костной ткани и ее регуляция / Ф. Х. Камилов Е. Р. Фаршатова, Д. А. Еникеев // Фунд. исслед. – 2014. – № 7-4. – С. 836–842.
6. Vater, C. Culture media for the differentiation of mesenchymal stromal cells / C. Vater, P. Kasten, M. Stiehler // Acta Biomater. – 2011. – Vol. 7, N 2. – P. 463–477. https://doi.org/10.1016/j.actbio.2010.07.037
7. Langenbach, F. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro / F. Langenbach, J. Handschel // Stem Cell Res. Ther. – 2013. – Vol. 4, N 5. – Art. 117. https://doi.org/10.1186/scrt328
8. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach / C. Granéli [et al.] // Stem Cell Res. – 2014. – Vol. 12, N 1. – P. 153–165. https://doi.org/10.1016/j.scr.2013.09.009
9. Osteoblast-oriented differentiation of BMSCs by co-culturing with composite scaffolds constructed using siliconsubstituted calcium phosphate, autogenous fine particulate bone powder and alginate in vitro / Y. Tian [et al.] // Oncotarget. – 2017. – Vol. 8, N 51. – P. 88308–88319. https://doi.org/10.18632/oncotarget.19015
10. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation / P. Rodríguez [et al.] // J. Cell. Biochem. – 2004. – Vol. 93, N 4. – P. 721–731. https://doi.org/10.1002/jcb.20234
11. Жерносеченко, А. Выбор носителя и условий дифференцировки мезенхимальных стволовых клеток для восстановления костной ткани / А. Жерносеченко, Я. Исайкина, Т. Михалевская // Наука и инновации. – 2019. – № 5. – С. 58–61.
12. Bone regeneration, reconstruction and use of osteogenic cells from basic knowledge, animal models to clinical trials / G. Hutchings [et al.] // J. Clin. Med. – 2020. – Vol. 9, N 1. – Art. 139. https://doi.org/10.3390/jcm9010139
13. Role and regulation of Runx2 in osteogenesis / M. Bruderer [et al.] // Eur. Cell. Mater. – 2014. – Vol. 28. – P. 269–286. https://doi.org/10.22203/ecm.v028a19
14. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression / G. S. Stein [et al.] // Oncogene. – 2004. ‒ Vol. 23. – P. 4315–4329. https://doi.org/10.1038/sj.onc.1207676
15. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not suffcient for osteoblast differentiation / M. H. Lee [et al.] // J. Cell. Biochem. – 1999. – Vol. 73, N 1. – P. 114–125.
16. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures / W. Liu [et al.] // J. Cell Biol. – 2001. – Vol. 155, N 1. – P. 157–166. https://doi.org/10.1083/jcb.200105052
17. In vitro osteogenic potential of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio / C. Loebel [et al.] // Tissue Eng. Part A. – 2015. – Vol. 21, N 1–2. – P. 115–123. https://doi.org/10.1089/ten.tea.2014.0096
18. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors / H. Akiyama [et al.] // Proc. Natl. Acad. Sci. USA. – 2005. – Vol. 102, N 41. – P. 14665–14670. https://doi.org/10.1073/pnas.0504750102
19. Dominance of Sox9 function over Runx2 during skeletogenesis / G. Zhou [et al.] // Proc. Natl. Acad. Sci. USA. – 2006. – Vol. 103, N 50. – P. 19004–19009. https://doi.org/10.1073/pnas.0605170103
20. SP7 inhibits osteoblast differentiation at a late stage in mice / C. A. Yoshida [et al.] // PLoS ONE. – 2012. – Vol. 7, N 3. – Р. e32364. https://doi.org/10.1371/journal.pone.0032364
21. BMP signals regulate Dlx5 during early avian skull development / N. Holleville [et al.] // Dev. Biol. – 2003. – Vol. 257, N 1. – P. 177–189. https://doi.org/10.1016/S0012-1606(03)00059-9
22. BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network / M. Q. Hassan [et al.] // J. Biol. Chem. – 2006. – Vol. 281, N 52. – P. 40515–40526. https://doi.org/10.1074/jbc.m604508200
23. Heo, J. S. Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells / J. S. Heo, S. G. Lee, H. O. Kim // Int. J. Mol. Med. – 2017. – Vol. 40, N 5. – P. 1486–1494. https://doi.org/10.3892/ijmm.2017.3142
24. BMP signaling in mesenchymal stem cell differentiation and bone formation / M. Beederman [et al.] // J. Biomed. Sci. Eng. – 2013. – Vol. 6, N 8A. – P. 32–52. https://doi.org/10.4236/jbise.2013.68a1004
25. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells / H. H. Luu [et al.] // J. Orthop. Res. – 2007. – Vol. 25, N 5. – P. 665–677. https://doi.org/10.1002/jor.20359
26. A comprehensive analysis of the dual roles of BMPsin regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells / Q. Kang [et al.] // Stem Cells Dev. – 2009. – Vol. 18, N 4. – P. 545–559. https://doi.org/10.1089/scd.2008.0130
27. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages / F. Ng [et al.] // Blood. – 2008. – Vol. 112, N 2. – P. 295–307. https://doi.org/10.1182/blood-2007-07-103697
28. Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after Injection / A. Lebouvier [et al.] // Stem Cell Res. Ther. – 2015. – Vol. 6, N 1. – Art. 68. https://doi.org/10.1186/s13287-015-0036-y
29. Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages / M. Ch. Ciuffreda [et al.] // Mesenchymal stem cells: methods and protocols, methods in molecular biology / ed. M. Gnecchi. – N. Y., 2016. – Vol. 1416. – P. 149‒158.
30. How does the pathophysiological context influence delivery of bone growth factors? / X. Yu [et al.] // Adv. Drug Deliv. Rev. – 2015. – Vol. 84. – P. 68–84. https://doi.org/10.1016/j.addr.2014.10.010
31. Мурзич, А. Э. Экспериментальное обоснование способа аутотрансплантации мезенхимальных стволовых клеток для регенерации костной ткани головки бедра / А. Э. Мурзич, Л. А. Пашкевич, А. А. Жерносеченко // Вес. Нац. aкад. навук Беларусі. Сер. мед. навук. – 2020. – Т. 17, № 1. – С. 7–19.
32. Zhou, H. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering / H. Zhou, H. H. K. Xu // Biomaterials. – 2011. – Vol. 32, N 30. – P. 7503–7513. https://doi.org/10.1016/j.biomaterials.2011.06.045
33. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling / Y.-R. V. Shih [et al.] // Proc. Natl. Acad. Sci. USA. – 2014. – Vol. 111, N 3. – P. 990–995. https://doi.org/10.1073/pnas.1321717111
34. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP / H. Yuan [et al.] // J. Mater. SciMater Med. – 2001. – Vol. 12, N 1. – P. 7–13. https://doi.org/10.1023/A:1026792615665
35. The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells / J. Liu [et al.] // Am. J. Transl. Res. – 2015. – Vol. 7, N 9. – P. 1588–1601.
36. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics / H. Yuan [et al.] // Biomaterials. – 1999. – Vol. 20, N 19. – P. 1799–1806. https://doi.org/10.1016/S0142-9612(99)00075-7
37. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig / W. Götz [et al.] // Folia Histochemica et Cytobiologica. – 2010. – Vol. 48, N 4. – P. 589–596. https://doi.org/10.2478/v10042-010-0096-x
38. Polo-Corrales, L. Scaffold Design for Bone Regeneration / L. Polo-Corrales, M. Latorre-Esteves, J. E. Ramirez-Vick // J. Nanosci. Nanotechnol. – 2014. – Vol. 14, N 1. – P. 15–56. https://doi.org/10.1166/jnn.2014.9127
39. Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro / G. Calabrese [et al.] // PLoS ONЕ. – 2016. – Vol. 11, N 3. – Р. e0151181. https://doi.org/10.1371/journal.pone.0151181
40. Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells / J. I. Dawson [et al.] // Biomaterials. – 2008. – Vol. 29, N 21. – P. 3105–3116. https://doi.org/10.1016/j.biomaterials.2008.03.040