1. World Health Organization. Global Cancer Observatory [Electronic resource]. – Mode of access: https://gco.iarc.fr. – Date of access: 20.01.2024.
2. Клинический протокол «Алгоритмы диагностики и лечения злокачественных новообразований» [Электронный ресурс] // Национальный правовой Интернет-портал Республики Беларусь. – Режим доступа: https://minzdrav.gov.by/upload/dadvfiles/9660.pdf. – Дата доступа: 22.10.2023.
3. Lekka, M. Applicability of applicability of atomic force microscopy to determine cancer-related changes in cells / M. Lekka // Phil. Trans. R. Soc. A. ‒ 2022. ‒ Vol. 380, art. 20210346. https://doi.org/10.1098/rsta.2021.0346
4. Samani, A. Elastic moduli of normal and pathological human breast tissues: An inversion-technique-based investigation of 169 samples / A. Samani, J. Zubovits, D. Plewes // Phys. Med. Biol. ‒ 2007. ‒ Vol. 52, N 6. ‒ P. 1565–1576. https://doi.org/10.1088/0031-9155/52/6/002
5. Mohammadalipour, A. Deformability of breast cancer cells in correlation with surface markers and cell rolling / A. Mohammadalipour, M. M. Burdick, D. F. J. Tees // FASEB J. ‒ 2018. ‒ Vol. 32, N 4. ‒ P. 1806–1817. https://doi.org/10.1096/fj.201700762R
6. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells / J. Hu [et al.] // J. Mech. Behav. Biomed. Mater. ‒ 2018. ‒ Vol. 86. ‒ P. 1–13. https://doi.org/10.1016/j.jmbbm.2018.05.038
7. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy / E. A. Corbin [et al.] // Lab. Chip. ‒ 2015. ‒ Vol. 15, N 3. ‒ P. 839–847. https://doi.org/10.1039/c4lc01179a
8. Mechanical properties and nanomotion of BT-20 and ZR-75 breast cancer cells studied by atomic force microscopy and optical nanomotion detection method / M. N. Starodubtseva [et al.] // Cells. ‒ 2023. ‒ Vol. 12, N 19, art. 2362. https://doi.org/10.3390/cells12192362
9. Cytoskeletal dynamics in epithelial-mesenchymal transition: insights into therapeutic targets for cancer metastasis / A. Datta [et al.] // Cancers (Basel). ‒ 2021. ‒ Vol. 13, N 8, art. 1882. https://doi.org/10.3390/cancers13081882
10. Koh, H. Usefulness of CD109 expression as a prognostic biomarker in patients with cancer: A systematic review and meta-analysis / H. M. Koh, H. J. Lee, D. C. Kim // Medicine (Baltimore). – 2021. – Vol. 100, N 11, art. e25006. https://doi.org/10.1097/MD.0000000000025006
11. CD109 is a potential target for triple-negative breast cancer / J. Tao [et al.] // Tumor Biol. ‒ 2014. ‒ Vol. 35, N 12. ‒ P. 12083‒12090. https://doi.org/10.1007/s13277-014-2509-5
12. Breast cancer cell line classification and its relevance with breast tumor subtyping / X. Dai [et al.] // J. Cancer. ‒ 2017. ‒ Vol. 8, N 16. ‒ P. 3131–3141. https://doi.org/10.7150/jca.18457
13. Bahadori, M. New insights into connection of nucleolar functions and cancer / M. Bahadori // Tanaffos. ‒ 2019. ‒ Vol. 18, N 3. ‒ P. 173‒179.
14. Transforming growth factor-beta (TGF-β) signaling in cancer-A betrayal within / A. B. Baba [et al.] // Front Pharmacol. ‒ 2022. ‒ Vol. 13, art. 791272. https://doi.org/10.3389/fphar.2022.791272