@article{Качан И. В.2018-06-30, author = { Качан И. В.}, title = {НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ ОТ НАЧАЛЬНЫХ ДАННЫХ РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ДРОБНЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ}, year = {2018}, doi = {10.29235/1561-2430-2018-54-2-193-209}, publisher = {NP «NEICON»}, abstract = {Рассматриваются конечномерные стохастические дифференциальные уравнения с дробными броуновскими движениями, имеющими различные индексы Харста, большие 1/3, и со сносом. Данные разнородные составные компоненты уравнений объединены в единый процесс. Решения уравнений понимаются в интегральном смысле, а интегралы, в свою очередь, являются потраекторными интегралами Губинелли [1] и, таким образом, реализуют известный подход в теории грубых траекторий (rough path) [2]. Указаны условия, обеспечивающие существование и единственность решений рассматриваемых стохастических дифференциальных уравнений. Такие условия оказываются достаточными для получения результатов, касающихся непрерывной зависимости от начальных данных. В работе доказывается потраекторная непрерывная зависимость от начальных условий и правых частей решений рассматриваемых стохастических дифференциальных уравнений. Полученный результат не зависит от вероятностных свойств дробных броуновских движений и поэтому легко переносится на произвольные процессы, непрерывные по Гельдеру с показателем, большим 1/3. При этом возникающая в оценке константа получается экспо ненциально зависящей от норм дробных броуновских движений. С учетом последнего факта и доказанного потраекторного результата впоследствии выводится логарифмическая непрерывная зависимость в среднем от начальных условий и правых частей решений рассматриваемых стохастических дифференциальных уравнений, представляющая собой основной результат настоящей статьи.}, URL = {https://www.academjournals.by/publication/12922}, eprint = {https://www.academjournals.by/files/12888}, journal = {Известия Национальной академии наук Беларуси. Серия физико-математических наук}, }