%0 article %A Корзюк В. И., %A Столярчук И. И., %T Классическое решение смешанной задачи для уравнения типа Клейна – Гордона – Фока с характеристическими косыми производными в граничных условиях %D 2019 %R 10.29235/1561-2430-2019-55-1-7-21 %J Известия Национальной академии наук Беларуси. Серия физико-математических наук %X Рассматривается смешанная задача для уравнения типа Клейна – Гордона – Фока в полуполосе с первыми косыми производными в граничных условиях. При ее решении с помощью метода характеристик возникают эквивалентные интегральные уравнения Вольтерры второго рода. Для полученных интегральных уравнений доказано существование единственного решения в классе дважды непрерывно дифференцируемых функций при заданной гладкости начальных данных. Также показано, что для гладкости решения исходной задачи необходимо и достаточно выполнения условий согласования заданных функций при их достаточной гладкости. Метод характеристик сводится к разбиению всей области решения на подобласти, в каждой из которых строятся решения подзадач с использованием начальных и граничных условий. Полученные решения затем склеиваются в общих точках, порождая условия склейки, которые и являются условиями согласования. Для случая, когда направления косых производных в граничных условиях совпадают с характеристическими направлениями, доказывается усиление требований на гладкость заданных функций. Данный подход позволяет строить как точные, так и приближенные решения. Точные решения могут быть найдены тогда, когда удается разрешить эквивалентные интегральные уравнения Вольтерры. В противном случае можно найти приближенное решение задачи либо в аналитическом, либо в численном виде. При этом при построении приближенного решения существенными оказываются условия согласования, которые необходимо учитывать при использовании численных методов решения задачи. %U https://www.academjournals.by/publication/12854