%0 article %A Шилин А. П., %T О решении одного интегро-дифференциального уравнения с сингулярным и гиперсингулярным интегралами %D 2020 %R 10.29235/1561-2430-2020-56-3-298-309 %J Известия Национальной академии наук Беларуси. Серия физико-математических наук %X Изучено линейное интегро-дифференциальное уравнение первого порядка, заданное на замкнутой кривой, расположенной на комплексной плоскости. Коэффициенты уравнения имеют специальную структуру. Уравнение содержит сингулярный интеграл, понимаемый в смысле главного значения по Коши, и гиперсингулярный интеграл, понимаемый в смысле конечной части по Адамару. Применяется метод аналитического продолжения. Уравнение сводится к последовательному решению краевой задачи Римана и двух линейных дифференциальных уравнений. Задача Римана решается в классе аналитических функций с особыми точками. Дифференциальные уравнения решаются в классе аналитических функций в областях комплексной плоскости. Приводятся в явном виде условия разрешимости исходного уравнения. Решение уравнения при выполнении этих условий также приводится в явном виде. Рассмотрены примеры. Проанализирован неочевидный частный случай. %U https://www.academjournals.by/publication/12831