TY - JOUR T1 - Формулы полной вероятности и Байеса для совместных многомерно-матричных гауссовских распределений JF - Известия Национальной академии наук Беларуси. Серия физико-математических наук DO - 10.29235/1561-2430-2022-58-1-48-59 AU - Муха В. С., AU - Како Н. Ф., Y1 - 2022-04-04 UR - https://www.academjournals.by/publication/12717 N2 - Работа посвящена разработке математического аппарата для получения байесовских оценок параметров многомерных регрессионных объектов в их конечномерном многомерно-матричном описании. Такая потребность возникает, в частности, в задаче дуального управления регрессионными объектами, когда для описания многомерного управляемого объекта применяется многомерно-матричный математический аппарат. В статье вводится понятие одномерной случайной ячейки как совокупности многомерных случайных матриц (в соответствии с данными типа «массив ячеек» в системе программирования Матлаб) и дается определение совместного гауссовского распределения многомерных случайных матриц (определение гауссовской одномерной случайной ячейки). Это потребовало введения понятия одномерной ячейки математического ожидания и понятия двумерной ячейки вариаций-ковариаций одномерной случайной ячейки. Далее вычисляется один интеграл, связанный с функцией совместной гауссовской плотности вероятности многомерных случайных матриц. Приводятся две формулы полной вероятности и формула Байеса для совместных многомерно-матричных гауссовских распределений. На основе этих результатов получены байесовские оценки неизвестных коэффициентов многомерно-матричной полиномиальной функции регрессии. Алгоритм расчета байесовских оценок реализован в виде компьютерной программы. Представленные результаты обладают теоретической и алгоритмической общностью.