TY - JOUR T1 - Произвольной гладкости классическое решение первой смешанной задачи для уравнения типа Клейна – Гордона – Фока JF - Известия Национальной академии наук Беларуси. Серия физико-математических наук DO - 10.29235/1561-2430-2022-58-1-34-47 AU - Корзюк В. И., AU - Столярчук И. И., Y1 - 2022-04-04 UR - https://www.academjournals.by/publication/12716 N2 - Рассматривается первая смешанная задача для уравнения типа Клейна – Гордона – Фока в полуполосе, при этом исследуется существование и единственность решения произвольной гладкости. При решении данной задачи с помощью метода характеристик возникают эквивалентные интегральные уравнения Вольтерры второго рода. Для полученных интегральных уравнений доказано существование единственного решения в классе n раз непрерывно дифференцируемых функций при заданной гладкости начальных данных. Показано также, что для гладкости решения исходной задачи необходимо и достаточно выполнения условий согласования заданных функций при их достаточной гладкости. Метод характеристик сводится к разбиению всей области решения на подобласти, в каждой из которых строятся решения подзадач с использованием начальных и граничных условий. Полученные решения затем склеиваются в общих точках, порождая условия склейки, которые и являются условиями согласования. Данный подход позволяет строить как точные, так и приближенные решения. Точные решения могут быть найдены тогда, когда удается разрешить эквивалентные интегральные уравнения Вольтерры. В противном случае можно найти приближенное решение задачи либо в аналитическом, либо в численном виде. Наряду с этим при построении приближенного решения существенными оказываются условия согласования, которые необходимо учитывать при использовании численных методов решения задачи.