%0 article %A Гороховик В. В., %A Тыкун А. С., %T Субдифференцируемость функций, выпуклых относительно множества липшицевых вогнутых функций %D 2022 %R 10.29235/1561-2430-2022-58-1-7-20 %J Известия Национальной академии наук Беларуси. Серия физико-математических наук %X Функция, определенная на нормированном пространстве X, называется выпуклой относительно множества LĈ := LĈ (X,R ) липшицевых классически вогнутых функций (далее для краткости – LĈ -выпуклой), если она является верхней огибающей некоторого подмножества функций из LĈ. Функция является LĈ –выпуклой в том и только том случае, когда она полунепрерывна снизу и, кроме того, ограничена снизу некоторой липшицевой функцией. В статье вводится понятие LĈ -субдифференцируемости функции в точке, т. е. субдифференцируемости относительно липшицевых вогнутых функций, обобщающее понятие субдифференцируемости классически выпуклых функций, и доказывается, что для любой LĈ -выпуклой функции множество точек, в которых она является LĈ -субдифференцируемой, является плотным в ее эффективной области. Данное утверждение распространяет на более широкий класс полунепрерывных снизу функций известную теорему Брондстеда – Рокафеллара о существовании субдифференциала для классически выпуклых полунепрерывных снизу функций. Используя элементы подмножества LĈ θ ⊂ LĈ , состоящего из таких липшицевых вогнутых функций, которые принимают нулевое значение в нулевой точке пространства X, определяются понятия LĈ θ LĈ -субградиента и LĈ θ  -субдифференциала функции в точке. Исследуются свойства LĈ θ -субдифференциалов и их связь с классическим субдифференциалом Фенхеля – Рокафеллара. Рассматривая в качестве элементарных функций множество LČ := LČ (X,R ) липшицевых выпуклых (в классическом смысле) функций, вводятся симметричные LĈ -выпуклости и LĈ -субдифференцируемости понятия LČ -вогнутости и LČ -супердифференцируемости функций. В терминах LĈθ –субдифференциалов и LČθ -супердифференциалов устанавливаются критерии для точек глобального минимума и максимума функций. %U https://www.academjournals.by/publication/12714