1. Pera, M. F. Human pluripotent stem cells: a progress report / M. F. Pera // Current Opinion in Genetics & Development. – 2001. – Vol. 11, N 5. – P. 595–599.
2. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin / P. M. M. Matin [et al.] // Biochemical Society Transactions. – 2005. – Vol. 33, N 6. – P. 1526–1530.
3. Takahashi, K. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors / K. Takahashi, S. Yamanaka // Cell. – 2006. – Vol. 126, N 4. – P. 663–676.
4. Induced pluripotent stem cells generated without viral integration / M. Stadtfeld [et al.] // Science. – 2008. – Vol. 322, N 5903. – P. 945–949.
5. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media / A. B. J. Prowse [et al.] // J. Proteome Research. – 2007. – Vol. 6, N 9. – P. 3796–3807.
6. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3 / H. Yuan [et al.] // Genes and Development. – 1995. – Vol. 9, N 21. – P. 2635–2645.
7. A bivalent chromatin structure marks key developmental genes in embryonic stem cells / B. E. Bernstein [et al.] // Cell. – 2006. – Vol. 125, N 2. – P. 315–326.
8. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 / J. Nichols [et al.] // Cell. – 1998. – Vol. 95, N 3. – P. 379–391.
9. Dang, D. T. The biology of the mammalian Krüppel–like family of transcription factors / D. T. Dang, J. Pevsner, V. W. Yang // The Intern. J. of Biochemistry and Cell Biology. – 2000. – Vol. 32, N 11–12. – P. 1103–1121.
10. The c-Myc target gene network / C. V. Dang [et al.] // Seminars in Cancer Biology. – 2006. – Vol. 16, N 4. – P. 253–264.
11. Analysis of genomic targets reveals complex functions of MYC / J. H. Patel [et al.] // Nature Rev. Cancer. – 2004. – Vol. 4, N 7. – P. 562–568.
12. Widespread microRNA repression by Myc contributes to tumorigenesis / T.-C. Chang [et al.] // Nature Genetics. – 2008. – Vol. 40, N 1. – P. 43–50.
13. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts / M. Nakagawa [et al.] // Nature Biotechnology. – 2008. – Vol. 26, N 1. – P. 101–106.
14. Induced pluripotent stem cell lines derived from human somatic cells / J. Yu [et al.] // Science. – 2007. – Vol. 318, N 5858. – P. 1917–1920.
15. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET / T. Matsui [et al.] // Nature. – 2010. – Vol. 464, N 7290. – P. 927–931.
16. A high-efficiency system for the generation and study of human induced pluripotent stem cells / N. Maherali [et al.] // Cell Stem Cell. – 2008. – Vol. 3, N 3. – P. 340–345.
17. Deterministic direct reprogramming of somatic cells to pluripotency / Y. Rais [et al.] // Nature. – 2013. – Vol. 502, N 7469. – P. 65–70.
18. Kaji, K. Mbd3, a component of the NuRD co–repressor complex, is required for development of pluripotent cells / K. Kaji, J. Nichols, B. Hendrich // Development. – 2007. – Vol. 134, N 6. – P. 1123–1132.
19. Multiplex genome engineering using CRISPR/Cas9 systems / L. Cong [et al.] // Science. – 2013. – Vol. 339, N 6121. – P. 819–823.
20. Capecchi, M. R. Gene targeting in mice: functional analisys of mammalian genome for the twenty-first century / M. R. Capecchi // Nature Rev. Genetics. – 2005. – Vol. 6, N 6. – P. 507–512.
21. Potent a specific genetic interference by double–stranded RNAi Caenoharbditis elegans / A. Fire [et al.] // Nature. – 1998. – Vol. 391, N 6669. – P. 806–811.
22. Analysis of gene function in somatic mammalian cells using small interfering RNAs / S. M. Elbashir [et al.] // Methods. – 2002. – Vol. 26, N 2. – P. 199–213.
23. Analysis of mammalian gene function using small inreference RNAs / J. Martinez [et al.] // Nucleic Acids Symposium Series. – 2003. – Vol. 3, N 1. – P. 333.
24. Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing / N. Alic [et al.] // PloS One. – 2012. – Vol. 7, N 9. – P. e45376.
25. Theoretic applicability of antisense–mediated exon skipping for Duchenne muscular dsptrophy / A. Aartsma-Rus [et al.] // Human Mutation. – 2009. – Vol. 30, N 3. – P. 293–299.
26. Porteus, M. H. Mammalian gene targeting with designed zinc finger nucleases / M. H. Porteus // Molecular Therapy. – 2006. – Vol. 13, N 2. – P. 438–446.
27. A novel TALE nuclease acagffold enable high genome editing activity in combination with low toxicity / C. Mussollino [et al.] // Nycleic Acids Research. – 2011. – Vol. 39, N 21. – P. 9283–9293.
28. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity / M. Jinek [et al.] // Science. – 2012. – Vol. 337, N 6096. – P. 816–821.
29. Harnessing the CRISPR/Cas9 system to disrupt latent HIV–1 provirus / H. Ebina [et al.] // Sci. Rep. – 2013. – N 3. – Art. nr 2510.
30. Валетдинова, К. Р. Применение системы CRISPR/Cas9 для создания и исследования клеточных моделей наследственных заболеваний человека / К. Р. Валетдинова // Гены и клетки. – 2016. – Т. 11, № 2. – С. 10–20.