1. Урбанович, О. Ю. Молекулярные методы идентификации и генотипирования яблони и груши / О. Ю. Урбанович. ‒ Минск: Право и экономика, 2013. – 208 с.
2. Genetic identity and diversity of apple accessions within a candidate collection for the Norwegian National Clonal Germplasm Repository / M. Meland [et al.] // Horticulturae. – 2022. – Vol. 8, N 7. – P. 630. https://doi.org/10.3390/ horticulturae8070630
3. Урбанович, О. Ю. Паспортизация сортов яблони на основе SSR-маркеров / О. Ю. Урбанович, З. А. Козловская, Н. А. Картель // Докл. НАН Беларуси. – 2008. – Т. 52, № 5. – С. 93‒99.
4. Урбанович, О. Ю. Методические рекомендации по идентификации и паспортизации сортов яблони и груши на основе ДНК-маркеров / О. Ю. Урбанович, З. А. Козловская, Н. А. Картель. – Минск: Право и эконоимка, 2011. – 31 с.
5. SSR analysis based on molecular characterisation of apple germplasm in Lithuania / I. B. Mažeikienė [et al.] // Zemdirbyste = Agriculture. – 2019. – Vol. 106, N 2. – P. 159‒166. https://doi.org/10.13080/z-a.2019.106.021
6. Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.) / R. Liebhard [et al.] // Mol. Breed. – 2002. – Vol. 10, N 4. – P. 217‒241. https://doi.org/10.1023/A:1020525906332
7. Development of SSR databases available for both NGS and capillary electrophoresis in apple, pear and tea / S. Nishio [et al.] // Plants. – 2021. – Vol. 10, N 12. – P. 2796. https://doi.org/10.3390/plants10122796
8. Unipro UGENE: a unified bioinformatics toolkit / K. Okonechnikov [et al.] // Bioinformatics. – 2012. – Vol. 28, N 8. – P. 1166‒1167. https://doi.org/10.1093/bioinformatics/bts091
9. Nei, M. Mathematical model for studying genetic variation in terms of restriction endonucleases / M. Nei, W. H. Li // Proc. Natl. Acad. Sci. USA. – 1979. – Vol. 76, N 10. – P. 5269–5273. https://doi.org/ 10.1073/pnas.76.10.5269
10. Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating / S. Wright // Evolution. – 1965. – Vol. 19, N 3. – P. 395–420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x
11. Kloosterman, A. D. PCR-amplification and detection of the human DIS80 VNTR locus. Amplification condition, population genetics and application in forensic analysis / A. D. Kloosterman, B. Budowle, P. Daselaar // Int. J. Leg. Med. – 1993. – Vol. 105, N 5. – P. 257‒264. https://doi.org/10.1007/BF01370382
12. Pritchard, J. K. Inference of population structure using multilocus genotype data / J. K. Pritchard, M. Stephens, P. Donnelly // Genetics. – 2000. – Vol. 155, N 2. – P. 945‒959. https://doi.org/10.1093/genetics/155.2.945
13. Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method / D. A. Earl, B. M. Vonholdt // Cons. Genet. Res. – 2011. – Vol. 4, N 2. – P. 359‒361. https://doi.org/10.1007/ s12686-011-9548-7
14. Evanno, G. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study / G. Evanno, S. Regnaut, J. Goudet // Mol. Ecol. – 2005. – Vol. 14, N 8. – P. 2611‒2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
15. Characterization of microsatellite loci in apple (Malus × domestica Borkh.) cultivars / S. Sikorskaite [et al.] // Žemdirbystė = Agriculture. – 2012. – Vol. 99, N 2. – P. 131‒138.
16. Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple / C. M. Richards [et al.] // Tree Genet. and Genom. – 2009. – Vol. 6, N 2. – P. 339‒347. https://doi.org/10.1007/s11295-008-0190-9
17. Urbanovich, O. Y. Identification of apple tree cultivars growing in Belarus using SSR-markers / O. Y. Urbanovich, Z. A. Kazlovskaya // Acta Hortic. – 2009. – Vol. 839. – P. 479‒486. https://doi.org/10.17660/ActaHortic.2009.839.65
18. Genetic characterization of the apple germplasm collection in Central Italy: the value of local varieties / G. Marconi [et al.] // Front Plant Sci. – 2018. – Vol. 9. – Art. 1460. https://doi.org/10.3389/fpls.2018.01460
19. A new one-tube reaction kit for the SSR genotyping of apple (Malus × domestica Borkh.) / J. Cmejlova [et al.] // Plant Sci. – 2021. – Vol. 303. – P. 110768. https://doi.org/10.1016/j.plantsci.2020.110768
20. Identification of unknown apple (Malus × domestica) cultivars demonstrates the impact of local breeding program on cultivar diversity / B. L. Gross [et al.] // Genet. Resour. Crop Evol. – 2018. – Vol. 65, N 5. – P. 1317‒1327. https://doi. org/10.1007/s10722-018-0625-6
21. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level / J. Urrestarazu [et al.] // BMC Plant Biol. – 2016. – Vol. 16, N 1. – Art. 130. https://doi.org/10.1186/s12870- 016-0818-0
22. Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers / J. Urrestarazu [et al.] // Tree Genet. Genom. – 2012. – Vol. 8, N 6. – P. 1163‒1180. https://doi.org/10.1007/s11295-012-0502-y